Compute Groebner Basis of an ideal that includes parameters
I'm trying to compute the Groebner Basis of the ideal I=⟨f1,f2,f3,f4,f5⟩
f1=13(x1+x1x2−y1y2+(x1x2−y1y2)x3−(y1x2+y2x1)y3)−x0
x1,y1,x2,y2,x3,y3 are real variables and x0,y0 are some constants. I'm using lex order with x1>y1>x2>y2>x3>y3. What I've tried was
sage: R.<x1,y1,x2,y2,x3,y3> = PolynomialRing(QQ, order='lex')
sage: x0,y0 = var('x0,y0')
sage: f1 = 13*(x1+x1*x2-y1*y2+(x1*x2-y1*y2)*x3-(y1*x2+y2*x1)*y3)-x0
sage: f2 = 13*(y1+y1*x2+y2*x1+(y1*x2+y2*x1)*x3+(x1*x2-y1*y2)*y3)-y0
sage: f3 = x1^2+y1^2-1
sage: f4 = x2^2+y2^2-1
sage: f5 = x3^2+y3^2-1
sage: ideal(f1,f2,f3,f4,f5).groebner_basis()
but the output was
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-8-e03b88a807f0> in <module>()
----> 1 ideal(f1,f2,f3,f4,f5).groebner_basis()
sage/structure/element.pyx in sage.structure.element.Element.__getattr__ (/usr/lib/sagemath//src/build/cythonized/sage/structure/element.c:4675)()
sage/structure/misc.pyx in sage.structure.misc.getattr_from_other_class (/usr/lib/sagemath//src/build/cythonized/sage/structure/misc.c:1771)()
AttributeError: 'Ideal_generic' object has no attribute 'groebner_basis'
What can I do?
@ilgk: in general, only tick the "community wiki" box for "meta" questions (questions about the design of the Ask Sage website).