Quotient decomposition by Groebner basis
I can accomplish the following task in awkward ways using syzygy modules, but I am wondering if there is a better way somehow. It would be nice to have a single command for it.
Suppose we have a polynomial $P$ and a set of polynomials $Q_1,...,Q_n$, and it is possible to calculate the Groebner basis $G$ of the ideal generated by all the $Q_i$. Let $R$ be the remainder of $P$ after reducing by $G$. In Sage, how can we find polynomials $S_1,...,S_n$ such that $P = R + \sum S_i Q_i$?