Your code doesn't do what you probaby mean to do. Sequentially, your function :

computes `integrate(f, x)`

(using Sage's default integrator), then

creates a Fricas object representing this integral, and `return`

s it

Your code then tries to `pretty_print`

this fricas object, which fails (the error message is pretty specific...).

A couple suggestions :

Integrating via Fricas is more easily done by `integrate(f, x, algorithm="fricas")`

, which returns the Sage object representing the Fricas value returned by Fricas' integrator. (**EDIT :** typo fixed).

You can also do this manually with `fricas.integrate(*map(fricas, (f, x))).sage()`

, which returns `-((x - 1)*log(x - 1) - (x - 1)*log(x) + 1)/(x - 1)`

.

Quite intentionally, I leave the necessary explanations of this syntax to your explorations of Python and Sage documentations...

- The effect of
`pretty_print`

may be platform-dependent but also object-dependant...

**EDIT :** On Sagemath 9.8.beta4 running locally, I get :

```
sage: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:f = 1/(x*(x-1)^2)
:print("default : ",f.integrate(x))
:print("maxima : ",f.integrate(x, algorithm="maxima"))
:print("giac : ",f.integrate(x, algorithm="giac"))
:print("sympy : ",f.integrate(x, algorithm="sympy"))
:print("mathematica_free : ",f.integrate(x, algorithm="mathematica_free"))
:print("fricas : ",f.integrate(x, algorithm="fricas"))
:--
default : -1/(x - 1) - log(x - 1) + log(x)
maxima : -1/(x - 1) - log(x - 1) + log(x)
giac : -1/(x - 1) + log(abs(-1/(x - 1) - 1))
sympy : -1/(x - 1) - log(x - 1) + log(x)
mathematica_free : -1/(x - 1) - log(x - 1) + log(x)
fricas : -((x - 1)*log(x - 1) - (x - 1)*log(x) + 1)/(x - 1)
```

On SageCell on 2022-12-06, reults are similar for `default`

, `maxima`

, `giac`

and `sympy`

integrators ; `fricas`

fails and `mathematica_free`

"never" returns.

HTH,