# Calculating Integral

f(x) = e**(-x) * log(x+1);

uu = integral(f, (x, 0, oo));

uu.n(digits=18)

why this dont work?

Calculating Integral

f(x) = e**(-x) * log(x+1);

uu = integral(f, (x, 0, oo));

uu.n(digits=18)

why this dont work?

add a comment

3

As far as I can tell, this seems to be a bug. `uu`

evaluates to the expression `e*expintegral_e(1, 1)`

and the `expintegral_e`

function doesn't seem to be defined. There is a `exponential_integral_1`

function which seems to give the correct answer:

```
sage: N(e*exponential_integral_1(1), digits=18)
0.596347362323194107
```

This agrees with WolframAlpha.

2

Yup, @benjaminfjones is right on track.

```
sage: sage.symbolic.pynac.symbol_table['maxima']
{'elliptic_e': elliptic_e, 'imagpart': imag_part, 'acsch': arccsch, 'glaisher': glaisher, 'asinh': arcsinh,
'minf': -Infinity, 'elliptic_f': elliptic_f, '(1+sqrt(5))/2': golden_ratio, 'inf': +Infinity, 'log(2)': log2,
'kron_delta': kronecker_delta, 'asin': arcsin, 'log': log, 'atanh': arctanh, 'brun': brun, '%pi': pi,
'acosh': arccosh, 'sin': sin, 'mertens': mertens, 'ceiling': ceil, 'infinity': Infinity, 'elliptic_ec':
elliptic_ec, 'atan': arctan, 'factorial': factorial, 'twinprime': twinprime, 'khinchin': khinchin,
'catalan': catalan, 'signum': sgn, 'binomial': binomial, 'delta': dirac_delta, 'asec': arcsec,
'elliptic_kc': elliptic_kc, '%gamma': euler_gamma, 'realpart': real_part, 'elliptic_eu': elliptic_eu,
'cos': cos, 'acoth': arccoth, 'gamma_incomplete': gamma, 'li[2]': dilog, 'atan2': arctan2, 'exp': exp,
'psi[0]': psi, 'asech': arcsech, 'acos': arccos, 'acot': arccot, 'acsc': arccsc, 'elliptic_pi': elliptic_pi}
```

We seem to be missing quite a few of the functions at The Maxima special function listing. Fixing this is Ticket #11143.

Asked: **
2011-04-06 11:49:23 -0600
**

Seen: **289 times**

Last updated: **Apr 06 '11**

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.