# Find solution to Polynomial Sequences without going through variety

Hi everyone, I'm computing the Groebner basis of an ideal defined over the QQ ring. Once I have this Groebner basis, I would like to obtain a set of values that satisfy the equations in the Groebner basis. I know that the full set is going to be the variety of the ideal, but since this object is huge, I might not be interested in finding those values. In Maple, after computing the Groebner basis, I'm able to call the solve() method on it and even set a maximum number of solutions I want to obtain. As a small example:

```
P.<x,y,z,t>=PolynomialRing(QQ,4)
I = P.ideal(x*(x-1), y*(y-1), z*(z-1), t - x*y*z)
gb = I.groebner_basis()
```

Here I could have called `I.variety()`

or `gb.variety()`

and obtained the same set of solutions:

```
sage: gbI.variety()
[{y: 0, z: 0, t: 0, x: 0},
{y: 0, z: 0, t: 0, x: 1},
{y: 1, z: 0, t: 0, x: 0},
{y: 1, z: 0, t: 0, x: 1},
{y: 0, z: 1, t: 0, x: 0},
{y: 0, z: 1, t: 0, x: 1},
{y: 1, z: 1, t: 0, x: 0},
{y: 1, z: 1, t: 1, x: 1}]
```

But I would like to know if it is possible to call a method like (I can do this in Maple):

```
solve(gb,[max_sol=2])
```

Such that I can obtain a subset of the variety instead of the whole set. My motivation is that the size of the initial system of polynomials that I have is considerably larger than this example, and finding the feasible solutions on the reduced Groebner basis is more manageable. I might also not be interested in all the elements in the variety. Finally, if I transform the Groebner basis in an ideal itself and try to compute the variety on that object

```
gbI = ideal(gb)
gbI.variety()
```

I find the following error

```
RuntimeError: error in Singular function call 'groebner':
int overflow in hilb 3
error occurred in or before standard.lib::stdhilb line 299: ` intvec hi = hilb( Id(1),1,W );`
expected intvec-expression. type 'help intvec;'
leaving standard.lib::stdhilb
leaving standard.lib::groebner
```

The

`variety`

method can be turned into an iterator, but it is not clear whether it will be faster (it depends on where is the time-consuming part of the code). Could you please provide the code for the genuine larger example so that we can test ?Can we find out what Maple's algorithm is? I'm also interested in this.