# Sage incorrectly evaluates series

It incorrectly evaluates $\displaystyle\sum_{n=0}^{\infty}\frac{1}{((2n+1)^2-4)^2}=\frac{\pi^2}{64}-\frac{1}{12}$, but correct answer is $\displaystyle\frac{\pi^2}{64}$

Sage incorrectly evaluates series

2

Indeed:

```
sage: n = var('n')
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity)
1/64*pi^2 - 1/12
```

See ticket #22005. Mathematica does it correctly:

```
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='mathematica')
1/64*pi^2
```

Giac gives this:

```
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='giac')
1/32*Psi(-1/2, 1) - 1/8
```

And SymPy seems to do it correctly:

```
sage: from sympy.abc import n
sage: from sympy import summation, oo
sage: A = summation(1/((2*n+1)^2-4)^2, (n, 0, oo))
sage: A._sage_()
1/64*pi^2
```

I created ticket #22004 so that one can do:

```
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='sympy')
1/64*pi^2
```

This may actually be https://sourceforge.net/p/maxima/bugs... which is apparently fixed in upstream.

Asked: **
2016-12-01 02:50:57 -0500
**

Seen: **128 times**

Last updated: **Dec 01 '16**

Testing planarity on embedding gives wrong result

Minimal polynomial isn't minimal?

non-negative integer relations on vertices

Plot picewise function + infinity, error message

How to increase maxterms for hypergeometric?

Finding number of strongly connected components

Solving system of ODE gets "ValueError"

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.

Thanks for reporting !