# Sage incorrectly evaluates series

It incorrectly evaluates $\displaystyle\sum_{n=0}^{\infty}\frac{1}{((2n+1)^2-4)^2}=\frac{\pi^2}{64}-\frac{1}{12}$, but correct answer is $\displaystyle\frac{\pi^2}{64}$

Sage incorrectly evaluates series

2

Indeed:

```
sage: n = var('n')
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity)
1/64*pi^2 - 1/12
```

See ticket #22005. Mathematica does it correctly:

```
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='mathematica')
1/64*pi^2
```

Giac gives this:

```
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='giac')
1/32*Psi(-1/2, 1) - 1/8
```

And SymPy seems to do it correctly:

```
sage: from sympy.abc import n
sage: from sympy import summation, oo
sage: A = summation(1/((2*n+1)^2-4)^2, (n, 0, oo))
sage: A._sage_()
1/64*pi^2
```

I created ticket #22004 so that one can do:

```
sage: sum(1/((2*n+1)^2-4)^2, n, 0, Infinity, algorithm='sympy')
1/64*pi^2
```

This may actually be https://sourceforge.net/p/maxima/bugs... which is apparently fixed in upstream.

Asked: **
2016-12-01 02:50:57 -0500
**

Seen: **141 times**

Last updated: **Dec 01 '16**

Stack overflow in boolean test

integral() failing with "segmentation fault"

$p$-adic regulator calculations

Convert exponential form to hyperbolic functions

Sage symbolic math simplification error

Sagemath 8.0 and Sagemath 8.1 and Windows 10

tseriesChaos package for R from Sage Notebook

Combinations(range(100), 100).list() takes forever

Cannot mulyiply polynomial by matrix when ordering is explicitly specified

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.

Thanks for reporting !