Ask Your Question
0

Problem computing Grobner basis

asked 2014-09-28 01:35:09 +0100

this post is marked as community wiki

This post is a wiki. Anyone with karma >750 is welcome to improve it.

I'm have the following code:

R0.<c4,e2,e3,e4> = QQ[]
F0 = Frac(R0)
R1.<a,b,m1,m2,m3,m4,r1,r2,r3,r4,s1,s2,s3,s4> = PolynomialRing(F0,14,order='degrevlex')
R2.<r,s,v,w> = R1[]

m = a + b*w
Mst = m1*m + m2*r + m3*s + m4
Rst = r1*m + r2*r + r3*s + r4
Sst = s1*m + s2*r + s3*s + s4

P1l = s + c4*v
P1r = m
P2l = m + e2*r + e3*s + e4*v 
P2r = r

Q1l = Sst + c4*v
Q1r = Mst
Q2l = Mst + e2*Rst + e3*Sst + e4*v 
Q2r = Rst

P = P1l*P1r - P2l*P2r
Q = Q1l*Q1r - Q2l*Q2r
H = P-Q
I = ideal(H.coefficients())
J = I.groebner_basis()

I get back an error from Singular:

SingularError: Singular error:
   ? unknown option `set`
   ? unknown option `sage7`
   ? error occurred in or before STDIN line 11: `option(set,sage7);`

Any idea what is going on? It won't crash with the "lex" ordering, but I'm running the computation in parallel on different cores with different orderings hoping one of them will eventually find something.

edit retag flag offensive close merge delete

1 Answer

Sort by » oldest newest most voted
0

answered 2014-09-28 18:15:37 +0100

nbruin gravatar image

updated 2014-09-30 19:44:23 +0100

On sage 6.4beta2 with singular version 3-1-6 (Dec. 2012) I see no such error. The answer returned is:

[r2*s3^2 + ((-c4^2*e2*e3 + 2*c4*e2*e4 + e4^2)/(c4^2*e3^2 - 2*c4*e3*e4 + e4^2))*r3*s3^2 + ((-e4)/(-c4*e3 + e4))*s3^2 + ((-c4^2*e2*e3 - c4*e3*e4)/(c4^2*e3^2 - 2*c4*e3*e4 + e4^2))*r3 + (c4*e3/(-c4*e3 + e4))*s3,
 a*m1 + ((-e4)/(-c4*e3))*a*r2 + ((-2*c4*e2*e4 - c4*e3*e4 - e4^2)/(c4^2*e3^2 - c4*e3*e4))*a*r3 + ((c4*e3 + e4)/(-c4*e3))*a + m4,
 b*m1 + ((-e4)/(-c4*e3))*b*r2 + ((-2*c4*e2*e4 - c4*e3*e4 - e4^2)/(c4^2*e3^2 - c4*e3*e4))*b*r3 + ((c4*e3 + e4)/(-c4*e3))*b,
 b*m4,
 a*r1 + ((-1)/(-e3))*a*r2 + ((-2*c4*e2 - c4*e3 - e4)/(c4*e3^2 - e3*e4))*a*r3 + (1/(-e3))*a + r4,
 b*r1 + ((-1)/(-e3))*b*r2 + ((-2*c4*e2 - c4*e3 - e4)/(c4*e3^2 - e3*e4))*b*r3 + (1/(-e3))*b,
 m4*r1 + ((-1)/(-e3))*m4*r2 + ((-2*c4*e2 - c4*e3 - e4)/(c4*e3^2 - e3*e4))*m4*r3 - m1*r4 + (e4/(-c4*e3))*r2*r4 + ((2*c4*e2*e4 + c4*e3*e4 + e4^2)/(c4^2*e3^2 - c4*e3*e4))*r3*r4 + (1/(-e3))*m4 + ((-c4*e3 - e4)/(-c4*e3))*r4,
 r2^2 + ((c4*e3 - e4)/(c4*e2 + e4))*r2*s2 + ((-e4)/(c4*e2 + e4))*r2 + (e4/(c4*e2 + e4))*s2 + (-c4*e2)/(c4*e2 + e4),
 r2*r3 + ((c4^2*e2*e3 - 2*c4*e2*e4 - e4^2)/(c4^2*e2*e3 - c4*e2*e4 + c4*e3*e4 - e4^2))*r3*s3 + (e4/(c4*e3 - e4))*r3,
 r3^2 + ((c4*e3 - e4)/(c4*e2 + e4))*r3*s3,
 b*r4,
 a*s1 + ((-1)/(-e3))*a*s2 + ((-2*c4*e2 - c4*e3 - e4)/(c4*e3^2 - e3*e4))*a*s3 + ((2*c4*e2 + c4*e3 + e4)/(c4*e3^2 - e3*e4))*a + s4,
 b*s1 + ((-1)/(-e3))*b*s2 + ((-2*c4*e2 - c4*e3 - e4)/(c4*e3^2 - e3*e4))*b*s3 + ((2*c4*e2 + c4*e3 + e4)/(c4*e3^2 - e3*e4))*b,
 m4*s1 + ((-1)/(-e3))*m4*s2 + ((-2*c4*e2 - c4*e3 - e4)/(c4*e3^2 - e3*e4))*m4*s3 - m1*s4 + (e4/(-c4*e3))*r2*s4 + ((2*c4*e2*e4 + c4*e3*e4 + e4^2)/(c4^2*e3^2 - c4*e3*e4))*r3*s4 + ((2*c4*e2 + c4*e3 + e4)/(c4*e3^2 - e3*e4))*m4 + ((-c4*e3 - e4)/(-c4*e3))*s4,
 r4*s1 + ((-1)/(-e3))*r4*s2 + ((-2*c4*e2 - c4*e3 - e4)/(c4*e3^2 - e3*e4))*r4*s3 - r1*s4 + (1/(-e3))*r2*s4 + ((2*c4*e2 + c4*e3 + e4)/(c4*e3^2 - e3*e4))*r3*s4 + ((2*c4*e2 + c4*e3 + e4)/(c4*e3^2 - e3*e4))*r4 + ((-1)/(-e3))*s4,
 r3*s2 + r2*s3 + ((-2*c4^2*e2*e3 + 4*c4*e2*e4 + 2*e4^2 ...
(more)
edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 2014-09-28 01:35:09 +0100

Seen: 673 times

Last updated: Sep 30 '14