# how to run fraction elenment in Multivariate Polynomial Ring in over Finite Field ring

how to run fraction elenment in Multivariate Polynomial Ring in over Finite Field ring

k. = GF(27);k;k.list();(k.prime_subfield()).list()

k(a+1);k(3/4);k(3/56);k(3);k(5/8);k(5*a);k(a*8);k(5*a)/k(a*8);k(5*a)/k(a*8)==k(5/8)==k(50*a)/k(a*80);k(302*a)/k(a*301)==k(20/121)

frac=k.fraction_field();frac;k.is_integrally_closed();k.integral_closure().list()

F=Frac(k['x,y']);F;F(3*x/4);F(7*x/2-3);F(y)/F(y^2+3)

Fraction Field of Multivariate Polynomial Ring in x, y over Finite Field in a of size 3^3 0 -x Traceback (click to the left of this block for traceback) ... NameError: name 'y' is not defined

k.divides(28*a, 3/4);k(28*a)/k(3/4)

True Traceback (click to the left of this block for traceback) ... ZeroDivisionError: division by zero in finite field.