# Revision history [back]

It seems that the polynomial f itself does not contain the good information. Maybe 500 bits of precision is not enough?

sage: f.parent()
Multivariate Polynomial Ring in u, v over Real Field with 500 bits of precision


Because when I draw its roots with:

def plot_roots_of_f(start,stop,step):
u_range = srange(start, stop, step)
L = [(u,v) for u in u_range
for v in f.subs(u=u).univariate_polynomial().roots(multiplicities=False)
if (u,v) in P]
return points(L)


I get:

sage: G = plot_roots_of_f(1,20,.05) + plot_np It seems that the polynomial f itself does not contain the good information. Maybe 500 bits of precision is not enough?information.

sage: f.parent()
Multivariate Polynomial Ring in u, v over Real Field with 500 bits of precision


Because when I draw its roots with:

def plot_roots_of_f(start,stop,step):
u_range = srange(start, stop, step)
L = [(u,v) for u in u_range
for v in f.subs(u=u).univariate_polynomial().roots(multiplicities=False)
if (u,v) in P]
return points(L)


I get:

sage: G = plot_roots_of_f(1,20,.05) + plot_np Replacing u and v by x and y to use the ring over the rational field seems to give the same thing.

sage: R
Multivariate Polynomial Ring in x, y over Rational Field


Are you sure about that polynomial f ?

It seems that the polynomial f itself does not contain the good information.

sage: f.parent()
Multivariate Polynomial Ring in u, v over Real Field with 500 bits of precision


Because when I draw its roots with:

def plot_roots_of_f(start,stop,step):
u_range = srange(start, stop, step)
L = [(u,v) for u in u_range
for v in f.subs(u=u).univariate_polynomial().roots(multiplicities=False)
if (u,v) in P]
return points(L)
point(L)    # I am using point here because the sage function points is a list in your code


I get:

sage: plot_roots_of_f(1,20,.05) + plot_np Replacing u and v by x and y to use the ring over the rational field seems to give the same thing.

sage: R
Multivariate Polynomial Ring in x, y over Rational Field


Are you sure about that polynomial f ?

It seems that the polynomial f itself does not contain the good information.

sage: f.parent()
Multivariate Polynomial Ring in u, v over Real Field with 500 bits of precision


Because when I draw its roots with:

def plot_roots_of_f(start,stop,step):
u_range = srange(start, stop, step)
L = [(u,v) for u in u_range
for v in f.subs(u=u).univariate_polynomial().roots(multiplicities=False)
if (u,v) in P]
return point(L)    # I am using point here because the sage function points is a list in your the code


I get:

sage: plot_roots_of_f(1,20,.05) + plot_np Replacing u and v by x and y to use the ring over the rational field seems to give the same thing.

sage: R
Multivariate Polynomial Ring in x, y over Rational Field


Are you sure about that polynomial f ?

It seems that the polynomial f itself does not contain the good information.

sage: f.parent()
Multivariate Polynomial Ring in u, v over Real Field with 500 bits of precision


Because when I draw its roots with:

def plot_roots_of_f(start,stop,step):
u_range = srange(start, stop, step)
L = [(u,v) for u in u_range
for v in f.subs(u=u).univariate_polynomial().roots(multiplicities=False)
if (u,v) in P]
return point(L)  # using point because the sage function points is a list in the code


I get:

sage: plot_roots_of_f(1,20,.05) + plot_np Replacing u and v by x and y to use the ring over the rational field seems to give the same thing.

sage: R
Multivariate Polynomial Ring in x, y over Rational Field


Are you sure about that polynomial f ?

It seems that the polynomial f itself does not contain the good information.

sage: f.parent()
Multivariate Polynomial Ring in u, v over Real Field with 500 bits of precision


Because when I draw its roots with:

def plot_roots_of_f(start,stop,step):
u_range = srange(start, stop, step)
L = [(u,v) for u in u_range
for v in f.subs(u=u).univariate_polynomial().roots(multiplicities=False)
if (u,v) in P]
return point(L) # using point because the sage function points is a list in the code


I get:

sage: plot_roots_of_f(1,20,.05) + plot_np Replacing u and v by x and y to use the ring over the rational field seems to give the same thing.

sage: R
Multivariate Polynomial Ring in x, y over Rational Field


Are you sure about that polynomial f ?

? because the following seems weird:

sage: f.subs(u=20)
0


It seems that the polynomial f itself does not contain the good information.

sage: f.parent()
Multivariate Polynomial Ring in u, v over Real Field with 500 bits of precision


Because when I draw its roots with:

def plot_roots_of_f(start,stop,step):
roots_of_f(start,stop,step):
u_range = srange(start, stop, step)
L = [(u,v) for u in u_range
for v in f.subs(u=u).univariate_polynomial().roots(multiplicities=False)
if (u,v) in P]
return point(L) # using point because the sage function points L


I get (points is a list in the code

code and overwrites the sage function points, so I get:

sage: plot_roots_of_f(1,20,.05) am using point below): sage: point(roots_of_f(1,20,.05)) + plot_np Replacing u and v by x and y to use the ring over the rational field seems to give the same thing. sage: R
Multivariate Polynomial Ring in x, y over Rational Field
Are you sure about that polynomial f ? because the following seems weird: sage: f.subs(u=20)
0 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license. about | faq | help | privacy policy | terms of service Powered by Askbot version 0.7.59 Please note: Askbot requires javascript to work properly, please enable javascript in your browser, here is how //IE fix to hide the red margin var noscript = document.getElementsByTagName('noscript'); noscript.style.padding = '0px'; noscript.style.backgroundColor = 'transparent'; askbot['urls']['mark_read_message'] = '/s/messages/markread/'; askbot['urls']['get_tags_by_wildcard'] = '/s/get-tags-by-wildcard/'; askbot['urls']['get_tag_list'] = '/s/get-tag-list/'; askbot['urls']['follow_user'] = '/followit/follow/user/{{userId}}/'; askbot['urls']['unfollow_user'] = '/followit/unfollow/user/{{userId}}/'; askbot['urls']['user_signin'] = '/account/signin/'; askbot['urls']['getEditor'] = '/s/get-editor/'; askbot['urls']['apiGetQuestions'] = '/s/api/get_questions/'; askbot['urls']['ask'] = '/questions/ask/'; askbot['urls']['questions'] = '/questions/'; askbot['settings']['groupsEnabled'] = false; askbot['settings']['static_url'] = '/m/'; askbot['settings']['minSearchWordLength'] = 4; askbot['settings']['mathjaxEnabled'] = true; askbot['settings']['sharingSuffixText'] = ''; askbot['settings']['errorPlacement'] = 'after-label'; askbot['data']['maxCommentLength'] = 800; askbot['settings']['editorType'] = 'markdown'; askbot['settings']['commentsEditorType'] = 'rich\u002Dtext'; askbot['messages']['askYourQuestion'] = 'Ask Your Question'; askbot['messages']['acceptOwnAnswer'] = 'accept or unaccept your own answer'; askbot['messages']['followQuestions'] = 'follow questions'; askbot['settings']['allowedUploadFileTypes'] = [ "jpg", "jpeg", "gif", "bmp", "png", "tiff" ]; askbot['data']['haveFlashNotifications'] = true; askbot['data']['activeTab'] = 'questions'; askbot['settings']['csrfCookieName'] = 'asksage_csrf'; askbot['data']['searchUrl'] = ''; /*<![CDATA[*/ $('.mceStatusbar').remove();//a hack to remove the tinyMCE status bar$(document).ready(function(){ // focus input on the search bar endcomment var activeTab = askbot['data']['activeTab']; if (inArray(activeTab, ['users', 'questions', 'tags', 'badges'])) { var searchInput = $('#keywords'); } else if (activeTab === 'ask') { var searchInput =$('#id_title'); } else { var searchInput = undefined; animateHashes(); } var wasScrolled = $('#scroll-mem').val(); if (searchInput && !wasScrolled) { searchInput.focus(); putCursorAtEnd(searchInput); } var haveFullTextSearchTab = inArray(activeTab, ['questions', 'badges', 'ask']); var haveUserProfilePage =$('body').hasClass('user-profile-page'); if ((haveUserProfilePage || haveFullTextSearchTab) && searchInput && searchInput.length) { var search = new FullTextSearch(); askbot['controllers'] = askbot['controllers'] || {}; askbot['controllers']['fullTextSearch'] = search; search.setSearchUrl(askbot['data']['searchUrl']); if (activeTab === 'ask') { search.setAskButtonEnabled(false); } search.decorate(searchInput); } else if (activeTab === 'tags') { var search = new TagSearch(); search.decorate(searchInput); } if (askbot['data']['userIsAdminOrMod']) { $('body').addClass('admin'); } if (askbot['settings']['groupsEnabled']) { askbot['urls']['add_group'] = "/s/add-group/"; var group_dropdown = new GroupDropdown();$('.groups-dropdown').append(group_dropdown.getElement()); } var userRep = $('#userToolsNav .reputation'); if (userRep.length) { var showPermsTrigger = new ShowPermsTrigger(); showPermsTrigger.decorate(userRep); } }); if (askbot['data']['haveFlashNotifications']) {$('#validate_email_alert').click(function(){notify.close(true)}) notify.show(); } var langNav = $('.lang-nav'); if (langNav.length) { var nav = new LangNav(); nav.decorate(langNav); } /*]]>*/ if (typeof MathJax != 'undefined') { MathJax.Hub.Config({ extensions: ["tex2jax.js"], jax: ["input/TeX","output/HTML-CSS"], tex2jax: {inlineMath: [["$","$"],["\$","\$"]]} }); } else { console.log('Could not load MathJax'); } //todo - take this out into .js file$(document).ready(function(){ $('div.revision div[id^=rev-header-]').bind('click', function(){ var revId = this.id.substr(11); toggleRev(revId); }); lanai.highlightSyntax(); }); function toggleRev(id) { var arrow =$("#rev-arrow-" + id); var visible = arrow.attr("src").indexOf("hide") > -1; if (visible) { var image_path = '/m/default/media/images/expander-arrow-show.gif?v=19'; } else { var image_path = '/m/default/media/images/expander-arrow-hide.gif?v=19'; } image_path = image_path + "?v=19"; arrow.attr("src", image_path); \$("#rev-body-" + id).slideToggle("fast"); } for (url_name in askbot['urls']){ askbot['urls'][url_name] = cleanUrl(askbot['urls'][url_name]); }