2020-12-14 18:51:55 +0100 | received badge | ● Notable Question (source) |

2020-01-13 09:13:02 +0100 | received badge | ● Popular Question (source) |

2019-01-31 09:04:37 +0100 | asked a question | x coordinate Of an Elliptic Curve point I am defining an Elliptic curve E and then taking a random point P over E. now I want to print the x coordinate of the elliptic curve. How to do that ? Now I want to define w to be the x co-ordinate of P. |

2019-01-26 16:06:11 +0100 | commented answer | Declaring symbols in a Field thank you very much. Now it's working perfectly. |

2019-01-26 16:06:04 +0100 | received badge | ● Scholar (source) |

2019-01-26 04:08:29 +0100 | commented answer | Declaring symbols in a Field I think it is the latest version. i.e. 8.6 in macOs 10.13.6 in fact I checked in Cocalc and it has the same errors. Now I am really confused. :( Your code if I can get it to work is exactly what I need |

2019-01-25 20:08:07 +0100 | received badge | ● Nice Question (source) |

2019-01-25 10:16:46 +0100 | commented answer | Declaring symbols in a Field using your code I am getting this : |

2019-01-25 07:26:22 +0100 | commented answer | Declaring symbols in a Field Thank you for the solution. But I don't understand what the T definition doing actually. if with the same X you compute T(X)^10 the output is c1 |

2019-01-24 14:35:50 +0100 | received badge | ● Student (source) |

2019-01-24 07:07:32 +0100 | received badge | ● Editor (source) |

2019-01-23 15:20:27 +0100 | asked a question | Declaring symbols in a Field Lets define a field F.<t> = GF(2^n)
now i want to define a variable points of the form x1+x2 Now I am defining R= PolynomialRing(ZZ,'x',n) c=R.gens() R=R.quotient_ring([c[i]^2-c[i] for i in range(0,n)]) then i get n variables but if I write x= sum(c[i]*t^i for i in (0,n)) I get the parent of x is R. and I am unable to collect the coefficients of t^i. after defining y and z in the same way. if I do X=x+y+z then I am getting the value as a Ring element with monomials in xi's and coefficients in F as X in a Ring element. Can anyone suggest any way to get the results as f1+f2 suppose I want to solve for X,Y in GF(2^3) with X^2Y^2= X^2+(1+t)Y^2 Now i want to store this output as A+Bt+Ct^2(how to do this? ) then I do: and I want to store this as E+Ft+Gt^2(is it possible to do?) finally I want to solve for ai's and bi's from the eqns A=E, B=F,C=G,ai^2=ai,bi^2=bi,ci^2=ci for i=1,2 |

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.