2018-05-12 01:46:57 -0600 | received badge | ● Student (source) |

2018-05-12 01:46:14 -0600 | asked a question | Laurent Expansion at Infinity / Root finding I'm new to sage, and I was trying to implement the following, to partial success: I want to take the $p^{th}$ root of a polynomial (for a specified $p$), expand it as a Laurent series at infinity, and take the polynomial part of the expansion. I've written some code which seems to work with partial success, but it also fails in some very straightforward cases. It works, for instance, with $(x^2-3x+5)^{1/2}$ and $(x^3-5x^2+45x-713)^{1/3}$, but not (for example) with $(x^8-x^7+9x^6-7x^5+4x^4-x^3)^{1/2}$. I feel as though my method is kind of ad-hoc, and was hoping somebody could point me to a better way to do this. This is the error message it throws, for what it's worth: Additionally, is there a faster/more trustworthy built-in function or package which computes the rational/integer roots of polynomials in $\mathbb{Q}[x]$ (i.e. better than just f.roots())? |

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.