Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.

How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?

1 | initial version |

Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.

How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?

2 | retagged |

Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.

How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.