Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.
How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?
1 | initial version |
Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.
How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?
2 | retagged |
Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.
How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?