Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

Elliptic curves over function fields

Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.

How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?

click to hide/show revision 2
retagged

Elliptic curves over function fields

Let $E$ be an elliptic curve over a function field $K=\mathbb{F}_q(t)$.

How do we compute the height pairing matrix for a set of points $P_1,\ldots,P_n\in E(K)$? or the height of a single point?