# Revision history [back]

Hi,

I am completely new to Sage. To test the visualization of a subgroup of SL(2)a, I entered the following code:

G=SL(2,ZZ)
identity = matrix(ZZ, [[1,0], [0,1]])
G.cayley_table(names='elements',elements=[identity, -identity])


which outputs

              *      [1 0]
[0 1] [-1  0]
[ 0 -1]
+--------------------------------
[1 0]
[0 1]|     [1 0]
[0 1] [-1  0]
[ 0 -1]
[-1  0]
[ 0 -1]| [-1  0]
[ 0 -1]     [1 0]
[0 1]


Am I missing something to get a correctly displayed result ?

Thanks !

 2 retagged Kelvin Li 503 ●5 ●12 ●17

Hi,

I am completely new to Sage. To test the visualization of a subgroup of SL(2)a, I entered the following code:

G=SL(2,ZZ)
identity = matrix(ZZ, [[1,0], [0,1]])
G.cayley_table(names='elements',elements=[identity, -identity])


which outputs

              *      [1 0]
[0 1] [-1  0]
[ 0 -1]
+--------------------------------
[1 0]
[0 1]|     [1 0]
[0 1] [-1  0]
[ 0 -1]
[-1  0]
[ 0 -1]| [-1  0]
[ 0 -1]     [1 0]
[0 1]


Am I missing something to get a correctly displayed result ?

Thanks !

 3 retagged tmonteil 21103 ●25 ●152 ●391 http://wiki.sagemath.o...

Hi,

I am completely new to Sage. To test the visualization of a subgroup of SL(2)a, I entered the following code:

G=SL(2,ZZ)
identity = matrix(ZZ, [[1,0], [0,1]])
G.cayley_table(names='elements',elements=[identity, -identity])


which outputs

              *      [1 0]
[0 1] [-1  0]
[ 0 -1]
+--------------------------------
[1 0]
[0 1]|     [1 0]
[0 1] [-1  0]
[ 0 -1]
[-1  0]
[ 0 -1]| [-1  0]
[ 0 -1]     [1 0]
[0 1]


Am I missing something to get a correctly displayed result ?

Thanks !