How one can use Sagemath to prove that $\frac{x}{\sqrt{y^2 + 15 xz}} + \frac{y}{\sqrt{z^2 + 15 xy}} + \frac{z}{\sqrt{x^2 + 15 zy}}\geq \frac{3}{4}$ for all $x>0, y>0, z>0?$
| 1 | initial version | |
How one can use Sagemath to prove that $\frac{x}{\sqrt{y^2 + 15 xz}} + \frac{y}{\sqrt{z^2 + 15 xy}} + \frac{z}{\sqrt{x^2 + 15 zy}}\geq \frac{3}{4}$ for all $x>0, y>0, z>0?$
Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.