# Revision history [back]

### Using a function without specifying it

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty (a -x) f(x) dx$

which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.

### Using a function without specifying it

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty (a -x) (x -a) f(x) dx$

which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.

### Using a function without specifying it

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 \int_{-\infty}^a (a -x) f(x) dx + \int_{0}^\infty \int_{a}^\infty (x -a) f(x) dx$

which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.

### Using a function without specifying it

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^a (a -x) f(x) dx + \int_{a}^\infty (x -a) f(x) dx$

which is obviously true without specifying $f(x)$^(a $f(x)$ (a probability density). Is this possible in SageMath.

### Using a function without specifying it

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^a (a -x) f(x) dx + \int_{a}^\infty (x -a) f(x) dx$

which is obviously true without specifying $f(x)$ (a probability density). Is this possible in SageMath.SageMath ?