I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty (a -x) f(x) dx$

which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.

1 | initial version |

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty (a -x) f(x) dx$

which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty ~~(a -x) ~~(x -a) f(x) dx$

which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = ~~\int_{-\infty}^0 ~~\int_{-\infty}^a (a -x) f(x) dx + ~~\int_{0}^\infty ~~\int_{a}^\infty (x -a) f(x) dx$

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^a (a -x) f(x) dx + \int_{a}^\infty (x -a) f(x) dx$

which is obviously true without specifying ~~$f(x)$^(a ~~$f(x)$ (a probability density). Is this possible in SageMath.

I want to ask sagemath if

$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^a (a -x) f(x) dx + \int_{a}^\infty (x -a) f(x) dx$

which is obviously true without specifying $f(x)$ (a probability density). Is this possible in ~~SageMath.~~SageMath ?

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.