I want to ask sagemath if
$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty (a -x) f(x) dx$
which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.
1 | initial version |
I want to ask sagemath if
$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty (a -x) f(x) dx$
which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.
I want to ask sagemath if
$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 (a -x) f(x) dx + \int_{0}^\infty (a -x) (x -a) f(x) dx$
which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.
I want to ask sagemath if
$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^0 \int_{-\infty}^a (a -x) f(x) dx + \int_{0}^\infty \int_{a}^\infty (x -a) f(x) dx$
which is obviously true without specifying $f(x)$^(a probability density). Is this possible in SageMath.
I want to ask sagemath if
$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^a (a -x) f(x) dx + \int_{a}^\infty (x -a) f(x) dx$
which is obviously true without specifying $f(x)$^(a $f(x)$ (a probability density). Is this possible in SageMath.
I want to ask sagemath if
$\int_{-\infty}^\infty |x - a| f(x) dx = \int_{-\infty}^a (a -x) f(x) dx + \int_{a}^\infty (x -a) f(x) dx$
which is obviously true without specifying $f(x)$ (a probability density). Is this possible in SageMath.SageMath ?