Dear all,

A $q$-polynomial of $q$-degree r in $GF(q^m)$ is a polynomial of the form $P(x) = \sum_{i=0}^{r}p_ix^{q^i}$ for $p_i \in GF(q^m)$, $p_r\neq 0$.

How to define this $q$-polynomial in $GF(q^m)$?

1 | initial version |

Dear all,

A $q$-polynomial of $q$-degree r in $GF(q^m)$ is a polynomial of the form $P(x) = \sum_{i=0}^{r}p_ix^{q^i}$ for $p_i \in GF(q^m)$, $p_r\neq 0$.

How to define this $q$-polynomial in $GF(q^m)$?

Dear all,

A $q$-polynomial of $q$-degree r in $GF(q^m)$ is a polynomial of the form $P(x) = \sum_{i=0}^{r}p_ix^{q^i}$ for $p_i \in GF(q^m)$, $p_r\neq 0$.

How to define this $q$-polynomial in $GF(q^m)$?

Dear all,

A $q$-polynomial of $q$-degree ~~r ~~$r$ in $GF(q^m)$ is a polynomial of the form $P(x) = \sum_{i=0}^{r}p_ix^{q^i}$ for $p_i \in GF(q^m)$, $p_r\neq 0$.

How to define this $q$-polynomial in $GF(q^m)$?

Dear all,

A $q$-polynomial of $q$-degree $r$ in $GF(q^m)$ is a polynomial of the form $P(x) = \sum_{i=0}^{r}p_ix^{q^i}$ for $p_i \in GF(q^m)$, $p_r\neq 0$.

How to define this $q$-polynomial in ~~$GF(q^m)$?~~$GF(q^m)$? I do find this and its operations in Reference Manual.

Dear all,

A $q$-polynomial of $q$-degree $r$ in $GF(q^m)$ is a polynomial of the form $P(x) = \sum_{i=0}^{r}p_ix^{q^i}$ for $p_i \in GF(q^m)$, $p_r\neq 0$.

How to define this $q$-polynomial in $GF(q^m)$? I do not find this and its operations in Reference Manual.

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.