How can we transform curve
C(b): (3+b)*X^2*Y+(9+b)*X*Y^2-(4+b)*X^2*Z+(3-b^2)*X*Y*Z+(-4+b)*Y^2*Z+(-9+b)*X*Z^2+b*Y*Z^2 into an elliptic curve without valuing b?

1 | initial version |

How can we transform curve
C(b): (3+b)*X^2*Y+(9+b)*X*Y^2-(4+b)*X^2*Z+(3-b^2)*X*Y*Z+(-4+b)*Y^2*Z+(-9+b)*X*Z^2+b*Y*Z^2 into an elliptic curve without valuing b?

How can we transform curve
~~C(b): (3+b)~~$$
C(b)\ :\ (3+b)X^2Y + (9+b)XY^2 - (4+b)X^2Z + (3-b^2)XYZ + (-4+b)Y^2Z + (-9+b)XZ^2+bYZ^2
$$
into an elliptic curve without valuing *X^2*Y+(9+b)*X*Y^2-(4+b)*X^2*Z+(3-b^2)*X*Y*Z+(-4+b)*Y^2*Z+(-9+b)*X*Z^2+b*Y*Z^2 ~~b?~~$b$?

Edited: Expression in code format:

```
(3+b)*X^2*Y + (9+b)*X*Y^2 - (4+b)*X^2*Z + (3-b^2)*X*Y*Z + (-4+b)*Y^2*Z + (-9+b)*X*Z^2 + b*Y*Z^2
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.