Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

How to convert coordinates o a point from y^2=x^3+7 to y^2=x^3+4?

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

$E4 = EllipticCurve(GF(p), [0,4])$

$E7 = EllipticCurve(GF(p), [0,7])$

base_x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

base_y = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

#Basepoint of $y^2=x^3+7$

BP = E7(base_x, base_y, 1)$

#Point on $y^2=x^3+7$

Q = E([81119306557295043947776230900539651493257160932663731932698523086255548483211,69833235478127881789123626297864036834549011744885041054439092651501655231589])

#base point of $y^2=x3+4$

BasePoint2( [44959049921401095561708555029356671875656137150174062590365663013295388555357, 83434812528180346320431259926231725911951822121210091498845843183726829396473])

  • How to convert coordinates of $Q(x,y)$ on $y^2=x3+7$ to coordinates in $y^2=x3+4$ ? Code needed(SAGE, Python etc.).

How to convert coordinates o a point from y^2=x^3+7 to y^2=x^3+4?

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

$E4 E4 = EllipticCurve(GF(p), [0,4])$[0,4])

$E7 E7 = EllipticCurve(GF(p), [0,7])$[0,7])

base_x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

base_y = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

#Basepoint of $y^2=x^3+7$

BP = E7(base_x, base_y, 1)$

#Point on $y^2=x^3+7$

Q = E([81119306557295043947776230900539651493257160932663731932698523086255548483211,69833235478127881789123626297864036834549011744885041054439092651501655231589])

#base point of $y^2=x3+4$

BasePoint2( [44959049921401095561708555029356671875656137150174062590365663013295388555357, 83434812528180346320431259926231725911951822121210091498845843183726829396473])

  • How to convert coordinates of $Q(x,y)$ on $y^2=x3+7$ to coordinates in $y^2=x3+4$ ? Code needed(SAGE, Python etc.). etc.).

How to convert coordinates o a point from y^2=x^3+7 to y^2=x^3+4?

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

E4 = EllipticCurve(GF(p), [0,4])

E7 = EllipticCurve(GF(p), [0,7])

base_x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

base_y = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

#Basepoint of $y^2=x^3+7$

BP = E7(base_x, base_y, 1)$

#Point on $y^2=x^3+7$

Q = E([81119306557295043947776230900539651493257160932663731932698523086255548483211,69833235478127881789123626297864036834549011744885041054439092651501655231589])

#base point of $y^2=x3+4$

BasePoint2( [44959049921401095561708555029356671875656137150174062590365663013295388555357, 83434812528180346320431259926231725911951822121210091498845843183726829396473])

  • How to convert coordinates of $Q(x,y)$ on $y^2=x3+7$ to coordinates in $y^2=x3+4$ ? Code needed(SAGE, Python etc.).

How to convert coordinates o of a point from y^2=x^3+7 to y^2=x^3+4?

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

E4 = EllipticCurve(GF(p), [0,4])

E7 = EllipticCurve(GF(p), [0,7])

base_x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

base_y = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

#Basepoint of $y^2=x^3+7$

BP = E7(base_x, base_y, 1)$

#Point on $y^2=x^3+7$

Q = E([81119306557295043947776230900539651493257160932663731932698523086255548483211,69833235478127881789123626297864036834549011744885041054439092651501655231589])

#base point of $y^2=x3+4$

BasePoint2( [44959049921401095561708555029356671875656137150174062590365663013295388555357, 83434812528180346320431259926231725911951822121210091498845843183726829396473])

  • How to convert coordinates of $Q(x,y)$ on $y^2=x3+7$ to coordinates in $y^2=x3+4$ ? Code needed(SAGE, Python etc.).

How to convert coordinates of a point from y^2=x^3+7 curve to y^2=x^3+4?y^2=x^3+4 curve?

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

E4 = EllipticCurve(GF(p), [0,4])

E7 = EllipticCurve(GF(p), [0,7])

base_x = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

base_y = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

#Basepoint of $y^2=x^3+7$

BP = E7(base_x, base_y, 1)$

#Point on $y^2=x^3+7$

Q=BP * x

Q = E([81119306557295043947776230900539651493257160932663731932698523086255548483211,69833235478127881789123626297864036834549011744885041054439092651501655231589])

#base point of $y^2=x3+4$

BasePoint2( [44959049921401095561708555029356671875656137150174062590365663013295388555357, 83434812528180346320431259926231725911951822121210091498845843183726829396473])

  • How to convert coordinates of $Q(x,y)$ on $y^2=x3+7$ to coordinates in $y^2=x3+4$ ? Code needed(SAGE, Python etc.).