Let $K=\mathbb{Q}(\sqrt{2})$ and $\mathfrak{a}=(3)=3\mathcal{O}_K$ an ideal in $K$. How can I find the elements in $\mathcal{O}_K/\mathfrak{a}$ using sage?

1 | initial version |

Let $K=\mathbb{Q}(\sqrt{2})$ and $\mathfrak{a}=(3)=3\mathcal{O}_K$ an ideal in $K$. How can I find the elements in $\mathcal{O}_K/\mathfrak{a}$ using sage?

2 | retagged |

Let $K=\mathbb{Q}(\sqrt{2})$ and $\mathfrak{a}=(3)=3\mathcal{O}_K$ an ideal in $K$. How can I find the elements in $\mathcal{O}_K/\mathfrak{a}$ using sage?

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.