Let $K=\mathbb{Q}(\sqrt{2})$ and $\mathfrak{a}=(3)=3\mathcal{O}_K$ an ideal in $K$. How can I find the elements in $\mathcal{O}_K/\mathfrak{a}$ using sage?
1 | initial version |
Let $K=\mathbb{Q}(\sqrt{2})$ and $\mathfrak{a}=(3)=3\mathcal{O}_K$ an ideal in $K$. How can I find the elements in $\mathcal{O}_K/\mathfrak{a}$ using sage?
2 | retagged |
Let $K=\mathbb{Q}(\sqrt{2})$ and $\mathfrak{a}=(3)=3\mathcal{O}_K$ an ideal in $K$. How can I find the elements in $\mathcal{O}_K/\mathfrak{a}$ using sage?