Suppose you have a finite rank free module with a basis:
M = FiniteRankFreeModule(QQ, 4, name='M', start_index=1)
m = M.basis('m');
and a Clifford algebra
Q = QuadraticForm(QQ,-2*matrix.identity(4))
V.<e1,e2,e3,e4> = CliffordAlgebra(Q)
Is there a way to implement the quantization map q:T(M)→V from the tensor algebra to the Clifford algebra? It should satisfy q(1)=1, q(m[i])=ei and q(a⊗b)=q(a)∗q(b).