# Revision history [back]

### what instance is integral from?

When the result has integrate in it, I check for it as follows

sage: anti=integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x)
integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x)

sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
True


But the above does not work when the result is integral instead of integrate.

My question is, what instance is integral coming from?

sage: anti=integrate(cos(b*x + a)*cos_integral(d*x + c)/x,x, algorithm="fricas")
integral(cos(b*x + a)*cos_integral(d*x + c)/x, x)
sage: anti.operator()
integral
sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
False


I looked at http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic/integration/integral.html but still do not know how to check for intergal vs. integrate

Any suggestions? thanks --Nasser

 2 retagged eric_g 6213 ●10 ●48 ●128

### what instance is integral from?

When the result has integrate in it, I check for it as follows

sage: anti=integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x)
integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x)

sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
True


But the above does not work when the result is integral instead of integrate.

My question is, what instance is integral coming from?

sage: anti=integrate(cos(b*x + a)*cos_integral(d*x + c)/x,x, algorithm="fricas")
integral(cos(b*x + a)*cos_integral(d*x + c)/x, x)
sage: anti.operator()
integral
sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
False


I looked at http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic/integration/integral.html but still do not know how to check for intergal vs. integrate

Any suggestions? thanks --Nasser