Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

what instance is integral from?

When the result has integrate in it, I check for it as follows

sage: anti=integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x) 
     integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x)

sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
True

But the above does not work when the result is integral instead of integrate.

My question is, what instance is integral coming from?

sage: anti=integrate(cos(b*x + a)*cos_integral(d*x + c)/x,x, algorithm="fricas")
        integral(cos(b*x + a)*cos_integral(d*x + c)/x, x)
sage: anti.operator()
        integral
sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
         False

I looked at http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic/integration/integral.html but still do not know how to check for intergal vs. integrate

Any suggestions? thanks --Nasser

what instance is integral from?

When the result has integrate in it, I check for it as follows

sage: anti=integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x) 
     integrate(1/(sqrt(x + 1)*sqrt(-x + 1) + 5), x)

sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
True

But the above does not work when the result is integral instead of integrate.

My question is, what instance is integral coming from?

sage: anti=integrate(cos(b*x + a)*cos_integral(d*x + c)/x,x, algorithm="fricas")
        integral(cos(b*x + a)*cos_integral(d*x + c)/x, x)
sage: anti.operator()
        integral
sage: isinstance(anti.operator(), sage.symbolic.integration.integral.IndefiniteIntegral)
         False

I looked at http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic/integration/integral.html but still do not know how to check for intergal vs. integrate

Any suggestions? thanks --Nasser