### Numerical approximation of coefficients in fractions

I am aware that for expressions in the type
$$eq = c_0 + c_1x + c_2x^2...$$
the coefficients of x can be expressed as decimals by doing
eq.polinomial(RR)
however, I noticed that if it is in the form
$$eq = \dfrac{c_0 + c_1x}{c_2 + c_3x}$$
or in any form where it is impossible to express as $c_0 + c_1x^n$ where n is some power of x, the eq.polinomial(RR) only returns an error giving TypeError: fraction must have unit denominator.
How can I approximate $eq = \dfrac{c_0 + c_1x}{c_2 + c_3x}$ where ~~c_0, ~~$c_0, c_1, c_2, ~~c_3 are ~~c_3$ becomes some decimals?
I am aware that $\dfrac{c_0 + c_1x}{c_2 + c_3x}$ is not a polynomial however I do not know what it is.