Ask Your Question

Revision history [back]

click to hide/show revision 1
initial version

div, grad and curl once again

HI, and sorry to badger people who are all working to give us a terrific maths tool for no cost, but there's a big need for div, grad and curl in many applications, such as electromagnetics, quantum theory, fluid flow, etc.

Specifically, my wish list would be, if s is a scalar field, and v a vector one,

grad (s) in cartesians, polars, cylindricals and sphericals

div (v) over the same coordinate systems

curl (v) over the same coordinate systems

and

grad(grad(s)) over these four systems, the spherical one being quite tricky anyway

Is there any cance of some kind person implementing (and documenting) these?

div, grad and curl once again

HI, and sorry to badger people who are all working to give us a terrific maths tool for no cost, but there's a big need for div, grad and curl in many applications, such as electromagnetics, quantum theory, fluid flow, etc.

Specifically, my wish list would be, if s is a scalar field, and v a vector one,

grad (s) in cartesians, polars, cylindricals and sphericals

div (v) over the same coordinate systems

curl (v) over the same coordinate systems

and

grad(grad(s)) over these four systems, the spherical one being quite tricky anyway

Is there any cance of some kind person implementing (and documenting) these?

div, grad and curl once again

HI, and sorry to badger people who are all working to give us a terrific maths tool for no cost, but there's a big need for div, grad and curl in many applications, such as electromagnetics, quantum theory, fluid flow, etc.

Specifically, my wish list would be, if s is a scalar field, and v a vector one,

grad (s) in cartesians, polars, cylindricals and sphericals

div (v) over the same coordinate systems

curl (v) over the same coordinate systems

and

grad(grad(s)) over these four systems, the spherical one being quite tricky anyway

Is there any cance of some kind person implementing (and documenting) these?