### converting linear map to matrix representation

I have a linear map $\alpha$ from $F_{p^n} \longrightarrow F_{p^n}$, where we see $F_{p^n}$ as a vector space over $F_p$ with a $V_i$ as base elements. I want to create the matrix representation for $\alpha$. For that I have to calculate $\alpha(V_i)$ and then write it in the basis $V_i$ to get my values for the matrix. How exactly do I do the last in sage ? For eg. a polynomial ring it's easy because the elements are already written according to its base but in general thats not the case...