# Revision history [back]

### Factoring out complex exponentials

Hi, If I have an expression as follows

$\frac{3}{8} {{E}_y^-}^{2} \overline{{E_y^+}} e^{\left(i \omega t + 3 i k x\right)} + \frac{3}{8} \, {{E}_y^-}^{2} \overline{{{E}_y^-}} e^{\left(i \omega t + i k x\right)} + \frac{3}{4} \, {{E}_y^-} {E_y^+} \overline{{E_y^+}} e^{\left(i \, \omega t + i \, k x\right)} + \frac{3}{4} \, {{E}_y^-} {E_y^+} \overline{{{E}_y^-}} e^{\left(i \omega t - i k x\right)} + \frac{3}{8} \, {E_y^+}^{2} \overline{{E_y^+}} e^{\left(i \, \omega t - i \, k x\right)} + \frac{3}{8} \, {E_y^+}^{2} \overline{{{E}_y^-}} e^{\left(i \omega t - 3 i k x\right)}$

How do I factor out a complex exponential $e^{i\omega t - ikx}$ from the expression above using a command?

### Factoring out complex exponentials

Hi, If I have an expression as follows

follows $\frac{3}{8} {{E}_y^-}^{2} \overline{{E_y^+}} e^{\left(i \omega t + 3 i k x\right)} + \frac{3}{8} \, {{E}_y^-}^{2} \overline{{{E}_y^-}} e^{\left(i \omega t + i k x\right)} + \frac{3}{4} \, {{E}_y^-} {E_y^+} \overline{{E_y^+}} e^{\left(i \, \omega t + i \, k x\right)} + \frac{3}{4} \, {{E}_y^-} {E_y^+} \overline{{{E}_y^-}} e^{\left(i \omega t - i k x\right)} + \frac{3}{8} \, {E_y^+}^{2} \overline{{E_y^+}} e^{\left(i \, \omega t - i \, k x\right)} + \frac{3}{8} \, {E_y^+}^{2} \overline{{{E}_y^-}} e^{\left(i \omega t - 3 i k x\right)}$

How do I factor out a complex exponential $e^{i\omega t - ikx}$ from the expression above using a command? command?

### Factoring out complex exponentials

Hi, If I have an expression as follows $\frac{3}{8} {{E}_y^-}^{2} \overline{{E_y^+}} e^{\left(i \omega t + 3 i k x\right)} + \frac{3}{8} \, {{E}_y^-}^{2} \overline{{{E}_y^-}} e^{\left(i \omega t + i k x\right)} + \frac{3}{4} \, {{E}_y^-} {E_y^+} \overline{{E_y^+}} e^{\left(i \, \omega t + i \, k x\right)} + \frac{3}{4} \, {{E}_y^-} {E_y^+} \overline{{{E}_y^-}} e^{\left(i \omega t - i k x\right)} + \frac{3}{8} \, {E_y^+}^{2} \overline{{E_y^+}} e^{\left(i \, \omega t - i \, k x\right)} + \frac{3}{8} \, {E_y^+}^{2} \overline{{{E}_y^-}} e^{\left(i \omega t - 3 i k x\right)}$

How do I factor out a complex exponential $e^{i\omega t - ikx}$ from the expression above using a command?