I want to check whether or not two matrices. I need for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ?

1 | initial version |

I want to check whether or not two matrices. I need for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ?

I want to check whether or not two matrices. I need for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ? (Notice that I just want to verify whether two given matrices are conjugate or not, I don't need the actual matrices; meaning that say $X$ and $Y$ are conjugates and $AXA^{-1}=Y$. I just want to know if or not $X$ and $Y$ are conjugates, I don't need the matrix $A$)

Extending the previous question, say $AXA^{-1}=Y$. Then we can solve the system of linear equations $AX=YA$ to find out $A$. But is there any command which can directly find $A$ ?

3 | retagged |

I want to check whether or not two matrices. I need for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ? (Notice that I just want to verify whether two given matrices are conjugate or not, I don't need the actual matrices; meaning that say $X$ and $Y$ are conjugates and $AXA^{-1}=Y$. I just want to know if or not $X$ and $Y$ are conjugates, I don't need the matrix $A$)

Extending the previous question, say $AXA^{-1}=Y$. Then we can solve the system of linear equations $AX=YA$ to find out $A$. But is there any command which can directly find $A$ ?

I want to check whether or not two

~~matrices.~~matrices are conjugate. I need for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ? (Notice that I just want to verify whether two given matrices are conjugate or not, I don't need the actual matrices; meaning that say $X$ and $Y$ are conjugates and $AXA^{-1}=Y$. I just want to know if or not $X$ and $Y$ are conjugates, I don't need the matrix $A$)Extending the previous question, say $AXA^{-1}=Y$. Then we can solve the system of linear equations $AX=YA$ to find out $A$. But is there any command which can directly find $A$ ?

I want to check whether or not two matrices are conjugate. I need to check conjugacy for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ? (Notice that I just want to verify whether two given matrices are conjugate or not, I don't need the actual matrices; meaning that say $X$ and $Y$ are conjugates and $AXA^{-1}=Y$. I just want to know if or not $X$ and $Y$ are conjugates, I don't need the matrix $A$)

I want to check whether or not two matrices are conjugate. I need to check conjugacy for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ? (Notice that I just want to verify whether two given matrices are conjugate or not, I don't need the actual matrices; meaning that say $X$ and $Y$ are conjugates and $AXA^{-1}=Y$. I just want to know if or not $X$ and $Y$ are conjugates, I don't need the matrix $A$)

7 | retagged |

I want to check whether or not two matrices are conjugate. I need to check conjugacy for two matrices in $SL(2,\mathbb{Z})$. How to do it ? How to do it for any general ring or field ? (Notice that I just want to verify whether two given matrices are conjugate or not, I don't need the actual matrices; meaning that say $X$ and $Y$ are conjugates and $AXA^{-1}=Y$. I just want to know if or not $X$ and $Y$ are conjugates, I don't need the matrix $A$)

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.