Irreducible characters of high order finite general linear groups?
Hello,
I have been trying to run the following code:
GL(3, GF(4)).irreducible_characters()
However, when I do I get the following error:
GAPError
Traceback (most recent call last) Cell In[13], line 1 ----> 1 GL(Integer(3), GF(Integer(4))).irreducible_characters()File ~/miniforge3/envs/sage/lib/python3.11/site-packages/sage/misc/cachefunc.pyx:2333, in sage.misc.cachefunc.CachedMethodCallerNoArgs.__call__ (build/cythonized/sage/misc/cachefunc.c:16275)() 2331 if self.cache is None: 2332
f = self.f -> 2333 self.cache = f(self._instance) 2334 return self.cache 2335File ~/miniforge3/envs/sage/lib/python3.11/site-packages/sage/groups/libgap_mixin.py:669, in GroupMixinLibGAP.irreducible_characters(self) 667 if not self.is_finite(): 668 raise NotImplementedError("only implemented for finite groups") --> 669 Irr = self.gap().Irr() 670 L = [ClassFunction_libgap(self, irr) for irr in Irr] 671 return tuple(L)
File ~/miniforge3/envs/sage/lib/python3.11/site-packages/sage/libs/gap/element.pyx:2637, in sage.libs.gap.element.GapElement_MethodProxy.__call__ (build/cythonized/sage/libs/gap/element.c:27120)() 2635 return GapElement_Function.__call__(self, * ([self.first_argument] + list(args))) 2636 else: -> 2637 return GapElement_Function.__call__(self, self.first_argument) 2638 2639
File ~/miniforge3/envs/sage/lib/python3.11/site-packages/sage/libs/gap/element.pyx:2507, in sage.libs.gap.element.GapElement_Function.__call__ (build/cythonized/sage/libs/gap/element.c:26327)() 2505 try: 2506 sig_GAP_Enter() -> 2507 sig_on() 2508 if n == 0: 2509 result = GAP_CallFunc0Args(self.value)
GAPError: Error, List Element: <list>[68] must have an assigned value
Note that if you run the following:
GapGrp2=gap("GL(3, 4)")
GapGrp2.IrrDixonSchneider()
the program works fine (it prints out the irreducible characters and returns no error).
Does anyone know why this is happening and how it can be solved? Is is a bug with the GAP system or the interface of the GAP system and SageMath?
More generally, I am looking for efficient ways to work with irreducible characters of general linear groups of finite order (which tend to get large pretty quickly), if anyone has ideas on how to do that?