Why does a polynomial become an element of a fraction field?
I have a multivariate polynomial f
in x1,x2,x3,x4,x5,x6,x7
on a field k=GF2(a)
and 2 lists z1=[1,a,0,x4,x5,0,0], z2=[1,a,0,a,a+1,x6,x7]
. When I run f(z1)
, I have a polynomial, but with f(z2)
, I receive FractionFieldElement. So I can call f(z1).constant_coefficient()
, but I could not do the same with f(z2)
.
F2=GF(2); Rr.<x> = F2[]
k.<a> = F2.extension(x^2+x+1) # looks like bad syntax: the dot in "F." on the left side
v=3
o1=2
o2=2
n=v+o1+o2
R=PolynomialRing(k,["x%d" %i for i in range (1,n+1)])
x=R.gens()
Fc=[] # o1 polynomials in the first layer
for im in range(o1): # what's o1? Sorry, when I pasted, some mistakes appeared but I didn't control them
f=0
for i in range (v): # what's v?
for j in range (i,v+o1):
f+=k.random_element()*x[i]*x[j]
for i in range (n-o2):
f+=k.random_element()*x[i]
f+=k.random_element()
Fc.append(f)
for im in range(o1,o1+o2):
f=0
for i in range (v+o1):
for j in range (i,n):
f+=k.random_element()*x[i]*x[j]
for i in range (n):
f+=k.random_element()*x[i]
f+=k.random_element()
Fc.append(f)
w=vector([k.random_element() for i in range (o1+o2)])
Fn=[R.random_element() for i in range (o1)]
while True:
y_rd=[k.random_element() for j in range (v)]
y=y_rd+[x[jj] for jj in range (v,v+o1)]+[0 for jjj in range (v+o1,n)]
bc=[]
Colist=[]
for i in range (o1):
Fn[i]=Fc[i](y)
cc=w[i]-(Fn[i].constant_coefficient())
bc.append(cc)
mbc=vector(bc)
for i in range (o1):
Colist.append(Fn[i].coefficient(x[j]) for j in range (v,v+o1))
Mtx=matrix(Colist)
if rank(Mtx.augment(mbc))==rank(Mtx):
break
yb=Mtx.solve_right(mbc)
ybb=list(yb)
zz1=y_rd+ybb
print(y)
for i in range (o1+o2):
print(Fc[i])
print(Fc[i](y))
print(type(Fc[i](y)))
print('-----------------------------------------')
yy=zz1+[x[i] for i in range (v+o1,n)]
print(yy)
for i in range (o1+o2):
print(Fc[i])
print(Fc[i](yy))
print(type(Fc[i](yy)))
Please provide details about how you defined everything so that we can try to reproduce and troubleshoot the issue.
F2=GF(2); Rr.<x> = F2[] F. = F2.extension(x^2+x+1) k=F R=PolynomialRing(k,["x%d" %i for i in range (1,n+1)]) x=R.gens() Fc=[] # o1 polynomials in the first layer for im in range(o1): f=0 for i in range (v): for j in range (i,v+o1): f+=k.random_element()x[i]x[j] for i in range (n-o2): f+=k.random_element()x[i] f+=k.random_element() Fc.append(f) # o2 polynomials in the second layer for im in range(o1,o1+o2): f=0 for i in range (v+o1): for j in range (i,n): f+=k.random_element()x[i]*x[j] for i in range (n): f
while True: y_rd=[k.random_element() for j in range (v)] y=y_rd+[x[jj] for jj in range (v,v+o1)]+[0 for jjj in range (v+o1,n)] bc=[] Colist=[] for i in range (o1): Fn[i]=Fci
yb=Mtx.solve_right(mbc) ybb=list(yb) zz1=y_rd+ybb print(y) for i in range (o1+o2): print(Fc[i]) print(Fci) print(type(Fci)) print('-----------------------------------------')
yy=zz1+[x[i] for i in range (v+o1,n)] print(yy) for i in range (o1+o2): print(Fc[i]) print(Fci) print(type(Fci))
Please edit the actual question to add this information; it's really hard to read like this.