Processing math: 100%

First time here? Check out the FAQ!

Ask Your Question
0

How can I obtain representatives of a quotient ring?

asked 1 year ago

Ys1123 gravatar image

I want to compute quotient of integer ring of Q(ω)(ω3=1) by a prime ideal (43ω). Especially I want to compute representatives.

N=3
x=polygen(ZZ,'x')
K.<a>=CyclotomicField(N)
O = K.ring_of_integers()
p=-4-3*a
R.<b,c>=QuotientRing(O, K.ideal(p))

What should I do next?

More, I want to compute its cardinality (=13), But

R.cardinality()

made error.

Preview: (hide)

1 Answer

Sort by » oldest newest most voted
0

answered 1 year ago

rburing gravatar image

Go this way instead:

sage: P = K.ideal(p)
sage: R = P.residue_field()
sage: R.cardinality()
13
sage: [z.lift() for z in R]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Why representatives are integers:

sage: R(a)
3
sage: (-a)*p
a - 3
sage: (-a)*P in P
True

So in the quotient a=3.

In general a is mapped to one of K.defining_polynomial().roots(R, multiplicities=False).

Preview: (hide)
link

Comments

Thank you. What does R(a) mean? By the way this way seems very ad hoc. Isn’t there any ways to compute representatives of quotient of general (polynomial) ring?

Ys1123 gravatar imageYs1123 ( 1 year ago )

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 1 year ago

Seen: 189 times

Last updated: Oct 08 '23