First off, if a given polynomial f
is symmetric, then the following conversion
SymmetricFunctions(f.base_ring()).e().from_polynomial(f)
will do the job.
For a non-symmetric polynomial, I think the following function is equivalent to the one in Mathematica:
def sym_reduce(f):
Sym = SymmetricFunctions(f.base_ring())
m = Sym.m()
e = Sym.e()
v = f.variables()
s = sum( t[0] * m[d].expand(len(v),v) for t in f if (d:=t[1].degrees())==tuple(sorted(d,reverse=True)) )
return sum(c*e[d] for d,c in e.from_polynomial(s) if len(d)==0 or d[0]<=len(v)), f-s
For example,
R.<x,y,z> = PolynomialRing(QQ)
sym_reduce((x-y)^2 * (x-z)^2 * (y-z)^2)
gives
(e[2, 2, 1, 1] - 4*e[2, 2, 2] - 4*e[3, 1, 1, 1] + 18*e[3, 2, 1] - 27*e[3, 3],
0)
PS. Note that the result depends on the variables order when given polynomial f
is not symmetric.
Please start posting anonymously - your entry will be published after you log in or create a new account.
Asked: 1 year ago
Seen: 198 times
Last updated: Sep 11 '23