How to reduce in sagemath a 40th degree equation to a 5th degree equation with a 6th degree equation? All three equations are mod 9
How to reduce in sagemath a 40th degree equation to a 5th degree equation with a 6th degree equation? All three equations are mod 9
equation 1
22835963083295358096932575511191922182123945984*x^40 + 456719261665907161938651510223838443642478919680*x^39 - 949119715649463320903760169683914265694526504960*x^38 - 74438103413079337596594904736638418838042150174720*x^37 - 211966311223616472653064458230223650062515432325120*x^36 + 5699423076536127631354075023203536650831985341628416*x^35 + 28973596255008264172921747247784413655190430306795520*x^34 - 271995774077019828088650443324511604201030917638062080*x^33 - 1867697404327342199267901249360368498941431933516644352*x^32 + 9056796651291403018168478696099136247382279833599868928*x^31 + 79160624263907039138284570805006392617165984624088711168*x^30 - 223551997508102686121059656283668963809997686306850734080*x^29 - 2458991015411203904019832329162025635890321461058054651904*x^28 + 4260693753881507670321728714982887826581938225381688475648*x^27 + 59071293374791879685378907558855333817814530563406754217984*x^26 - 65166805833928613316698470531587698330832804559521753071616*x^25 - 1131757178880074916089566167507231334194665050735930352074752*x^24 + 843273738240957848823393929862457096912314552519743678447616*x^23 + 17612018891685450913773925408995240476326126279055993164791808*x^22 - 9965070460907997689837650917987090430658787607861126978600960*x^21 - 224803412228839542185624982039516671368355084084003095634247680*x^20 + 115376363264002396798805411172610298752130761902895261355606016*x^19 + 2360934383698977135600868106052207944902529771066700907860197376*x^18 - 1308815542039402425703070866082728213909461400374939017803726848*x^17 - 20337746511113656868636319478920879710270359595089530799861530624*x^16 + 13558465130296871278633915980747022983007195978102160591142518784*x^15 + 142298688018343424254395657862764431521447510737554686159576104960*x^14 - 118833592326356595084649993445344253636179846197802558968828002304*x^13 - 794065401834625006842542559429023479028263847219436978179087007744*x^12 + 835819614910693852323042241683734160878949541950181684520436105216*x^11 + 3426759016172348767255673212872820400903705074714452879983524184064*x^10 - 4539247226522701303816038738989886579860962357232685201849757728768*x^9 - 10838172582209345115431209424474859020815749759396823997114335887360*x^8 + 18274547905763525031916419971549097309724446260463287119585027817472*x^7 + 22538630042118410739462196918476504623707986472870448264236719144960*x^6 - 51332294008917127137813530189611197158096252035341181816762615726080*x^5 - 22103913759369896814721471064671155443726673363949038033115234369536*x^4 + 89873238137891007192684349732347354457768316526153757296330427465728*x^3 - 13267389606759431082806583489371907647806512881963825978855904528384*x^2 - 73919625356285467948968028725559984622542638023960350194728622704640*x + 42792357763031228784543461920827458618601064112586804151160697595809
equation 2
262144*x^6 + 786432*x^5 - 8306688*x^4
- 17924096*x^3 + 96045792*x^2 + 105138912*x-405220671
equation 3
?
If they are mod 9, why the given polynomial coefficients are so large?
@Max Alekseyev is there a way in sagemath to reduce mod 9 coefficients? Also
Define your polynomials upfront over
Zmod(9)
like in @slelievre's answer. It will automatically take care of reducing all coefficients. Or if you have a polynomialf
over integers, you can change its ring toZmod(9)
viaf.change_ring(Zmod(9))
.