# Wrong quaternion order membership testing Anonymous

Let Q = QuaternionAlgebra(-2167, -7) be a rational quaternion algebra with standard basis {1, i , j, k} as follows.

sage: Q.<i, j, k> = QuaternionAlgebra(-2161,-7)
sage: B = [1/2 + 2/7*j + 1/14*k, 1/32*i + 13/32*j + 19/8*k, 4/7*j + 1/7*k, 4*k]
sage: O = Q.quaternion_order(B)
sage: O
Order of Quaternion Algebra (-2161, -7) with base ring Rational Field
with basis (1/2 + 2/7*j + 1/14*k, 1/32*i + 13/32*j + 19/8*k, 4/7*j + 1/7*k, 4*k)


I think this (maximal Z-)order doesn't contain k but I get

sage: k in O
True


The is inconsistent with the result on Magma:

> K := Rationals();
> Q<i, j, k> := QuaternionAlgebra<K|-2161, -7>;
> B := [ 1/2 + 2/7*j + 1/14*k, 1/32*i + 13/32*j + 19/8*k, 4/7*j + 1/7*k, 4*k ];
> O := QuaternionOrder(B);
> O;
Order of Quaternion Algebra with base ring Rational Field, defined by i^2 = -2161, j^2 = -7
with coefficient ring Integer Ring
> k in O;
false
> 2*k in O;
false
> 4*k in O;
true


What is the issue here?

edit retag close merge delete

Sort by » oldest newest most voted

This bug seems to have been reported already.

A fix needs review at:

more

I'm using older version but does it work properly on Sage 9.6? It seems there is no ticket saying it has been fixed yet.

Someone needs to review the ticket. Then it can be merged in the next version of Sage.

See Reviewing tickets in the developer guide.