Ask Your Question
1

solving for the center of the real quaternions

asked 2021-06-09 06:29:44 +0100

Performant Data gravatar image

updated 2021-06-10 08:41:10 +0100

I'm trying out Sage on quaternions, on the problem of finding the center of the real Hamiltonian quaternions $\mathbb{H}$. So what I tried was:

Q.<i,j,k> = QuaternionAlgebra(SR, -1, -1)

a1, b1, c1, d1 = SR.var('a1, b1, c1, d1', domain = RR)
a2, b2, c2, d2 = SR.var('a2, b2, c2, d2', domain = RR)

q1 = a1 + b1*i + c1*j + d1*k
q2 = a2 + b2*i + c2*j + d2*k

solve(q1*q2 - q2*q1, a1, b1, c1, d1)

which rewarded me with:

TypeError                                 Traceback (most recent call last)
<ipython-input-6-8a6c0ff8f7d0> in <module>()
      9 q2 = a2 + b2*i + c2*j + d2*k
     10 
---> 11 solve(q1*q2 - q2*q1, [a1, b1, c1, d1])

/home/sage/sage/local/lib/python3.7/site-packages/sage/symbolic/relation.py in solve(f, *args, **kwds)
   1045 
   1046     if not isinstance(f, (list, tuple)):
-> 1047         raise TypeError("The first argument must be a symbolic expression or a list of symbolic expressions.")
   1048 
   1049     # f is a list of such expressions or equations

TypeError: The first argument must be a symbolic expression or a list of symbolic expressions.

Well, OK, that's not a symbolic expression:

sage: type(q1*q2 - q2*q1)
<class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'>

At least this looks right:

sage: q1*q2 - q2*q1
((c1 - d1)*(c2 + d2) - (c1 + d1)*(c2 - d2))*i + (2*b2*d1 - 2*b1*d2)*j + (-(a2 + b2)*(c1 + d1) + (a2 - b2)*(c1 + d1) + (a1 + b1)*(c2 + d2) - (a1 - b1)*(c2 + d2) + 2*b2*d1 - 2*b1*d2)*k

I can figure out the answer from the last line, but was hoping for something like $b_1 = c_1 = d_1 = 0$. Not sure how this works.

update: Updated to Sage 9.1.

edit retag flag offensive close merge delete

Comments

1

Which version of sage ? Latest develop 9.4.beta1 says

sage: q1*q2 - q2*q1 == 0                                                        
(c1 - d1)*(c2 + d2) - (c1 + d1)*(c2 - d2) == 0
FrédéricC gravatar imageFrédéricC ( 2021-06-09 08:34:26 +0100 )edit

@FrédéricC: Sage 8.6. Looks like I should upgrade by running the Docker image.

OK, yeah, I get that response now with the 9.1 image. Updated the question. 👍

Performant Data gravatar imagePerformant Data ( 2021-06-10 05:18:03 +0100 )edit

2 Answers

Sort by » oldest newest most voted
1

answered 2021-06-09 08:25:47 +0100

Emmanuel Charpentier gravatar image

updated 2021-06-09 08:38:07 +0100

I do not know well the quaternion algebra implementation, so I may miss a better answer ; hence a workaround :

sage: Q.<i,j,k> = QuaternionAlgebra(SR, -1, -1)
sage: a1, b1, c1, d1 = SR.var('a1, b1, c1, d1', domain = "real") # Note : RR is a numerical approximation ring...
sage: a2, b2, c2, d2 = SR.var('a2, b2, c2, d2', domain = "real")
sage: q1 = a1 + b1*i + c1*j + d1*k
sage: q2 = a2 + b2*i + c2*j + d2*k
sage: solve((q1*q2-q2*q1).coefficient_tuple(), [a1, b1, c1, d1])
[[a1 == r3, b1 == r3*r4/b2, c1 == r4, d1 == c2*r4/b2]]

This answer can be obtained in a form slightly easier to use :

sage: Sol2 = solve((q1*q2-q2*q1).coefficient_tuple(), [a1, b1, c1, d1], algorithm="sympy") ; Sol2
[{b1: b2*d1/d2, c1: c2*d1/d2}]

(which do not involve new arbitrary variables.) or, shorter :

sage: solve((q1*q2-q2*q1).coefficient_tuple(), [a1, b1, c1, d1], algorithm="sympy")
[{b1: b2*d1/d2, c1: c2*d1/d2}]

HTH,

edit flag offensive delete link more

Comments

OK. I still feel like I'm missing how to express that I'm not interested in an answer based on specific a2, b2, c2, d2, but rather for any values of these.

But once again, I can easily finish the calculation with that stipulation.

Wondering why we need to convert to the coefficient tuple. 😕

Performant Data gravatar imagePerformant Data ( 2021-06-10 08:52:20 +0100 )edit
2

answered 2021-06-10 11:36:56 +0100

rburing gravatar image

You can use polynomial rings over polynomial rings:

A.<a1,b1,c1,d1> = PolynomialRing(QQ, order='lex')
B.<a2,b2,c2,d2> = PolynomialRing(A)
Q.<i,j,k> = QuaternionAlgebra(B.fraction_field(), -1, -1)
q1 = a1 + b1*i + c1*j + d1*k
q2 = a2 + b2*i + c2*j + d2*k
I = A.ideal(sum([B(f).coefficients() for f in (q1*q2 - q2*q1).coefficient_tuple()], []))
I.groebner_basis()

Output:

[b1, c1, d1]

meaning $b_1=c_1=d_1=0$ needs to hold for $a_1 + b_1i + c_1j + d_1k$ to be in the center, so the center is $\mathbb{R}$.

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2021-06-09 06:29:44 +0100

Seen: 346 times

Last updated: Jun 10 '21