Ask Your Question

# Computing dimensions

I have the following routine divided into 3 steps:

1)

p = dict()
P = Permutations(3)
for i in (1 .. 3):
for u in (1 .. 3):
p[i, u] = [1 if P[m][i-1] == u else 0
for m in (0 .. 5)]


2)

for i in (1 .. 3):
for u in (1 .. 3):
for j in (1 .. 3):
for v in (1 .. 3):
if i != j and u != v:
p[i, j, u, v] = [1 if P[m][i-1] == u and P[m][j-1] == v else 0
for m in (0 .. 5)]


3)

A1 = matrix([p[i, u]
for i in (1 .. 3)
for u in (1 .. 3)])
A2 = matrix([p[i, j, u, v]
for i in (1 .. 3) for j in (1 .. 3) if i != j
for u in (1 .. 3) for v in (1 .. 3) if u != v])
C1 = A1.stack(A2)
E1 = A1.right_kernel()
E2 = C1.right_kernel()
d1 = E1.dimension()
d2 = E2.dimension()


I'm interested in dimensions d1 and d2.

If I go to permutations of 4, I will need to adjust all for loops to (1 .. 4) and to add one more step similar to step 2 to construct one more matrix like

A3 =  matrix([p[i, j, k, u, v, w]
for i in (1 .. 4) for j in (1 .. 4)
for u in (1 .. 4) for v in (1 .. 4)
for k in (1 .. 4) for w in (1 .. 4)
if i != j and i != k and j != k
and u != v and u != w and v != w])


and also

C2 = C1.stack(A3)
E3 = C2.right_kernel()
d3 = E3.dimension()


So... I was wondering if there is some "easy" way to put this code in some kind of "generic" program. I mean, I could repeat the whole idea for permutations of 4 or 5 and so on, but it is not very practical. Any suggestions would be great.

edit retag close merge delete

## 1 Answer

Sort by » oldest newest most voted

Here is a refactoring of the code as a function of n, called dimensions for lack of a better name.

The documentation could better describe what sequence of dimensions is being computed.

def dimensions(n):
r"""
Return the sequence of dimensions for this n.

EXAMPLES::

sage: dimensions(3)
[1, 0]
sage: dimensions(4)
[14, 1, 0]
sage: dimensions(5)
[103, 42, 1, 0]
"""
P = Permutations(n)
N = P.cardinality()
C = matrix(ZZ, 0, N)
d = []
for k in range(1, n):
Arr = Arrangements([1 .. n], k)
A = matrix(ZZ, [[all(p[i - 1] == u for i, u in zip(ii, uu))
for p in P] for ii in Arr for uu in Arr])
C = C.stack(A)
d.append(N - C.rank())
return d


No surprise, it takes longer and longer as n grows:

sage: %time dimensions(3)
CPU times: user 4.18 ms, sys: 202 µs, total: 4.39 ms
Wall time: 4.29 ms
[1, 0]

sage: %time dimensions(4)
CPU times: user 169 ms, sys: 5.79 ms, total: 175 ms
Wall time: 189 ms
[14, 1, 0]

sage: %time dimensions(5)
CPU times: user 14.1 s, sys: 103 ms, total: 14.2 s
Wall time: 14.3 s
[103, 42, 1, 0]

more

## Comments

Many thanks. Do you have any suggestions of references to learn a bit more about programming?

I would recommend the book Computational mathematics with SageMath which is released under a Creative commons license and can be downloaded for free in pdf form in three languages or purchased in paper form in two languages.

## Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

## Stats

Asked: 2021-02-16 00:54:19 +0200

Seen: 65 times

Last updated: Feb 16