Ask Your Question
0

desolve crazy output

asked 2019-03-29 05:37:29 -0600

I made another one where i was plotting a function and i got a similar problem

k = var('k')
x = var('x')
T = function('T')(x)
de = diff(T,x)==1.54-0.259*(T-22)
f = desolve(de,T,[0,22])
blob = 27
f.plot(x,0,10) + plot(blob,x,0,7.098,color="red",figsize=4) + points([7.098,27],color="green",size=100) + text("[7.098,27]",(7.098,27.5),color="black")

I dont have enough points to upload the image but the graph grows and flattens out and the other graph touches with the graph at x=7.098.

Then if i want this result calculated for me I am thinking that it can be done by solving. so...

solve(f==blob,x)

And i get this output

[x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(2/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(4/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(6/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(8/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(10/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(12/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(2/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(16/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(18/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(20/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(22/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(24/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(26/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(4/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(30/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(32/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(34/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(36/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(38/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(40/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(6/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(44/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(46/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(48/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(50/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(52/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(54/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(8/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(58/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(60/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(62/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(64/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(66/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(68/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(10/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(72/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(2/7*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(76/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(78/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(80/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(82/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(12/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(86/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(88/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(90/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(92/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(94/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(96/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(14/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(100/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(102/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(104/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(106/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(108/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(110/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(16/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(114/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(116/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(118/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(120/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(122/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(124/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(18/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(128/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(130/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(132/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(134/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(136/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(138/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(20/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(142/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(144/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(146/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(4/7*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(150/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(152/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(22/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(156/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(158/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(160/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(162/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(164/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(166/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(24/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(170/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(172/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(174/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(176/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(178/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(180/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(26/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(184/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(186/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(188/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(190/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(192/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(194/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(28/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(198/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(200/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(202/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(204/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(206/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(208/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(30/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(212/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(214/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(216/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(218/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(220/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(6/7*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(32/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(226/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(228/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(230/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(232/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(234/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(236/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(34/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(240/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(242/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(244/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(246/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(248/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(250/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(36/37*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(254/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(256/259*I*pi)), x == 1000*log(1/7*44^(1/259)*7^(258/259)*e^(258/259*I*pi)), x == -258000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -256000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -254000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -36000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -250000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -248000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -246000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -244000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -242000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -240000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -34000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -236000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -234000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -232000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -230000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -228000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -226000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -32000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -6000/7*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -220000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -218000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -216000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -214000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -212000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -30000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -208000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -206000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -204000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -202000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -200000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -198000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -28000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -194000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -192000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -190000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -188000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -186000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -184000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -26000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -180000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -178000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -176000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -174000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -172000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -170000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -24000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -166000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -164000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -162000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -160000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -158000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -156000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -22000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -152000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -150000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -4000/7*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -146000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -144000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -142000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -20000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -138000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -136000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -134000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -132000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -130000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -128000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -18000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -124000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -122000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -120000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -118000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -116000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -114000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -16000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -110000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -108000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -106000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -104000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -102000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -100000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -14000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -96000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -94000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -92000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -90000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -88000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -86000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -12000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -82000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -80000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -78000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -76000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -2000/7*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -72000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -10000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -68000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -66000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -64000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -62000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -60000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -58000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -8000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -54000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -52000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -50000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -48000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -46000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -44000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -6000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -40000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -38000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -36000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -34000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -32000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -30000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -4000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -26000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -24000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -22000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -20000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -18000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -16000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -2000/37*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -12000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -10000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -8000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -6000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -4000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == -2000/259*I*pi + 1000*log(1/7*44^(1/259)*7^(258/259)), x == 1000*log(1/7*44^(1/259)*7^(258/259))]

But i can see that the simple answer should just be 7.098 so how can i get sage to sell me that? I am not interested in the complex or imaginary numbers i just want the simple numerical or rational answer from sage.

edit retag flag offensive close merge delete

Comments

Type (f-blob).find_root(0,10) to tell SAGE to find the root that you know is in the interval from 0 to 10 and ignore the rest.

dazedANDconfused gravatar imagedazedANDconfused ( 2019-03-29 08:38:51 -0600 )edit

1 answer

Sort by » oldest newest most voted
0

answered 2019-03-29 16:44:24 -0600

Emmanuel Charpentier gravatar image

You get a crazy answer because you want to use numerical floats as constants, that Maxima's desolve tries to approximate by fractions. This is crazy : desolve will happily get you a "non-crazy"answer if you yse ymbolic constants, that you vcan substitute afterwards :

 sage: T=function("T")
sage: de=diff(T(x),x)==a+b*(T(x)-c)
sage: f=desolve(de,T(x),[0,c], ivar=x);f
(b*c + a*e^(b*x) - a)/b
sage: f.subs([a==1.54,b==-0.259,c==22])(x=7.098)
27.0000969688078

Close enough for government's work. BTW, you are aware that most decimals do not have an exact binary representation, sure ?

HTH,

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2019-03-29 05:37:29 -0600

Seen: 47 times

Last updated: Mar 29