# Indefinite integral is incorrect

`indefinite_integral(sqrt(1+cos(x)**2), x).full_simplify()`

gives `1/6*sin(x)^3`

, which is incorrect.

Indefinite integral is incorrect

`indefinite_integral(sqrt(1+cos(x)**2), x).full_simplify()`

gives `1/6*sin(x)^3`

, which is incorrect.

3

This is a bug. Furthermore, it is *not* a `maxima`

bug, as it is often the case.
Here, Sage truly screws things up itself:

Maxima doesn't give a false answer:

`sage: maxima.integrate(sqrt(1+cos(x)^2),x).sage() integrate(sqrt(cos(x)^2 + 1), x)`

When one tries to "ease" the problem,

maxima doesn't recognize the "obvious", but does not give a false answer:

`sage: maxima.integrate(sqrt(1-m*sin(x)^2),x).sage() integrate(sqrt(-m*sin(x)^2 + 1), x)`

Sage does:

`sage: integrate(sqrt(1-m*sin(x)^2),x) 1/4*m*x - 1/8*m*sin(2*x)`

BTW: what is expected:

```
sage: elliptic_e(x,1/2).diff(x)
sqrt(-1/2*sin(x)^2 + 1)
```

One can easily check that `sympy`

, `giac`

and `fricas`

all fail to integrate,
but that none of them gives misleading "answers".

This one does not seem to be related to existing indefinite integral bugs, and is an original, genuine, Sage-specific one. Reported as Trac #26563.

Asked: **
2018-10-26 07:08:37 -0600
**

Seen: **96 times**

Last updated: **Oct 27 '18**

Plotting an integral with a variable as a limit

Two ways of integrating x↦xⁿsin(x) give contradictory results. Bug?

integral() failing with "segmentation fault"

Integration yields ImportError: libffi.so.4: No such file or directory

problem extracting the differentials of a chain complex

Problem with sign / sgn and .n()

Cannot mulyiply polynomial by matrix when ordering is explicitly specified

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.

Where did you get the

`indefinite_integral`

function ?in 8.5.b0:

@tmonteli, I use sage 8.1

Using integral(sqrt(1+cos(x)**2), x).full_simplify() as suggested still results in an answer which is incorrect, doesn't it? This is a nonelementary integral. See here or here