For what it's worth, you can force degree(x_n) = n+1 with the patch

```
--- /usr/lib/python2.7/site-packages/sage/rings/polynomial/infinite_polynomial_ring.py.bak 2019-09-03 09:24:46.299916008 -0300
+++ /usr/lib/python2.7/site-packages/sage/rings/polynomial/infinite_polynomial_ring.py 2019-09-03 09:42:00.063223890 -0300
@@ -993,8 +993,12 @@
except ValueError:
raise ValueError("Can't convert %s into an element of %s; the variables aren't admissible"%(x,self))
+ from sage.rings.integer import Integer
+
+ DegList = [Integer(s.split('_')[1])+1 for s in VarList]
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
- R = PolynomialRing(self._base, VarList, order=self._order)
+ from sage.rings.polynomial.term_order import TermOrder
+ R = PolynomialRing(self._base, VarList, order=TermOrder(self._order,DegList))
if isinstance(R, MPolynomialRing_libsingular) and isinstance(x,MPolynomial_libsingular): # everything else is so buggy that it's even not worth to try.
try:
# Problem: If there is only a partial overlap in the variables
@@ -1449,8 +1453,11 @@
raise IndexError("Variable index is too big - consider using the sparse implementation")
names = reduce(operator.add, names)
names.sort(key=P.varname_key, reverse=True)
+ from sage.rings.integer import Integer
+ DegList = [Integer(s.split('_')[1])+1 for s in names]
#Create the new polynomial ring
- P._P = PolynomialRing(P.base_ring(), names, order = P._order)
+ from sage.rings.polynomial.term_order import TermOrder
+ P._P = PolynomialRing(P.base_ring(), names, order = TermOrder(P._order, DegList))
##Get the generators
P._max = i
#return InfinitePolynomial_dense(P, P._P.gen(P._P.variable_names().index(self._name+'_'+str(i))))
```

I opened a ticket in https://trac.sagemath.org/ticket/28452