# why I get huge number in H-representation in sage?

I have a set of vertices and I want to find a H-representation of them. I used sage to do that but I got weird number in the inequalities! here is my code:

vert2 = [[1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1],[1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0],[0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3],[3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0],[0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1],[1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4],[4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3],[3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2],[2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3],[3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4],
[4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7],[7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6],[6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5],[5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4],[4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2,3],[3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1,2],
[2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0,1],[1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8,0],
[0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6,8],[8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7,6],
[6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0,7],[7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0,0],
[0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6,0],[0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3,6],
[6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2,3],[3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4,2],
[2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3,4],[4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2,3],
[3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1,2],[2,3,4,2,3,6,0,0,7,6,8,0,1,2,3,4,5,6,7,4,3,2,3,4,1,0,3,0,1,1]]

p2=Polyhedron(vertices = vert2)
p2
p2.Hrepresentation()

And here is the part of my answer:

A 29-dimensional polyhedron in ZZ^30 defined as the convex hull of 30 vertices
(An equation (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) x - 91 == 0, An inequality (0, -6643755617445331037202609358, -1115451987061522518725310169, -4620824246361587837443723580, -3077838211630051976366550554, -2958690652672660811230373721, -974408181934402275593859480, -3250586099217454711737435326, -1999390120369594790625124513, -1415422103472822894852139772, -2534807215524130595973233650, -2780858391260346768723034201, -4072521014492760746645432088, -1331138469264064061646992630, -4722885096499104848736533209, -3180475210961898948969228316, -3851685143879995858104878858, -3228011163515660410829231425, -3072642994521821646580427696, -1374868705058151838371429430, -4889037447034222629220355689, -2510460065219895800789661380, -2297947035840486945050864530, -3657717103544642567050992273, -3458628241192993528820697768, -295584745844116667823309878, -3868958368255490017832885737, -6000440427999093271578675404, 853080186343081392188416198, -2835167870342318913892483281) x + 260907258623794816872847788563 >= 0, An inequality (0, -3688248056685400306080899479, -853080186343081392188416198, -7496835803788412429391025556, -1968532173404603910913726367, -5473904432704669229632139778, -3930918397973133368554966752, -3811770839015742203418789919, -1827488368277483667782275678, -4103666285560536103925851524, -2852470306712676182813540711, -2268502289815904287040555970, -3387887401867211988161649848, -3633938577603428160911450399, -4925601200835842138833848286, -2184218655607145453835408828, -5575965282842186240924949407, -4033555397304980341157644514, -4704765330223077250293295056, -4081091349858741803017647623, -3925723180864903038768843894, -2227948891401233230559845628, -5742117633377304021408771887, -3363540251562977192978077578, -3151027222183568337239280728, -4510797289887723959239408471, -4311708427536074921009113966, -1148664932187198060011726076, -4722038554598571410021301935, -6853520614342174663767091602) x + 338537555581015223561993662581 >= 0,
edit retag close merge delete

Sort by » oldest newest most voted

What do you expect? The transformation from V-representation to H-representation is not a trivial one. This coefficient blowup might already seen when looking at solution to linear equations

sage: M = matrix(5, 6, [[2,1,0,0,0,0],
....:                   [0,2,1,0,0,0],
....:                   [0,0,2,1,0,0],
....:                   [0,0,0,2,1,0],
....:                   [0,0,0,0,2,1]])
sage: M
[2 1 0 0 0 0]
[0 2 1 0 0 0]
[0 0 2 1 0 0]
[0 0 0 2 1 0]
[0 0 0 0 2 1]
sage: M.right_kernel()
Free module of degree 6 and rank 1 over Integer Ring
Echelon basis matrix:
[  1  -2   4  -8  16 -32]
more