Ask Your Question
1

Typing in a command of an adding-to-infinity sum

asked 6 years ago

pizza gravatar image

updated 6 years ago

1/1-x = x^0+x^1+x^2+...

How can I type in such a command of an adding-to-infinity sum?

Urgent! If anyone have any answer or suggestion, please type in here! Thanks!

Preview: (hide)

Comments

Note that the question is about 1/(1 - x), not (1/1) - x.

slelievre gravatar imageslelievre ( 6 years ago )

3 Answers

Sort by » oldest newest most voted
2

answered 6 years ago

slelievre gravatar image

Depends if you want to input the series and get the sum of the series (in that case follow Eric's answer), or the converse, in which case you can ask for the series expansion.

sage: f = 1/(1-x)
sage: f.series(x)
1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 + 1*x^6 + 1*x^7 + 1*x^8
+ 1*x^9 + 1*x^10 + 1*x^11 + 1*x^12 + 1*x^13 + 1*x^14 + 1*x^15
+ 1*x^16 + 1*x^17 + 1*x^18 + 1*x^19 + Order(x^20)
Preview: (hide)
link
3

answered 6 years ago

eric_g gravatar image

Like this:

sage: assume(abs(x)<1)
sage: n = var('n')
sage: sum(x^n, n, 0, oo)
-1/(x - 1)
Preview: (hide)
link
1

answered 6 years ago

Emmanuel Charpentier gravatar image

slelièvre's answer gives a finite series, completed byy an O(n) term.. If you want the (supposedly exact) infinite series, you have (at least) two possibilities :

  • Maxima's powerseries does the job :

    sage: (1/(1-x)).maxima_methods().powerseries(x,0)

    sum(x^i1, i1, 0, +Infinity)

  • Sympy''s summation does it also :

    sage: sympy.summation(x^j,(j,0,oo))

    Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**j, (j, 0, oo)), True))

Sympy's solution is better (it gives the conditions of validity of the result), but currently can't be automatically transtaled to Sage, because Sympy's Sum method does not (yet) have a _sage_() method.

Preview: (hide)
link

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 6 years ago

Seen: 634 times

Last updated: Aug 13 '18