Ask Your Question

integrate sqrt(1-cos(x)), integr.interval from 0 to 2*pi

asked 2018-01-22 15:27:34 +0100

rewolf gravatar image

updated 2023-01-09 23:59:44 +0100

tmonteil gravatar image

The result equals zero. This ist wrong!

edit retag flag offensive close merge delete

2 Answers

Sort by ยป oldest newest most voted

answered 2018-01-23 00:24:52 +0100

Emmanuel Charpentier gravatar image

Indeed, the integral of a function positive on $\left(0\ 2\pi\right)$-{$\pi$} can't be null.

The problem is with the primitive choosen by maxima :

sage: integrate(sqrt(1-cos(x)),x)
-2*sqrt(2)/sqrt(sin(x)^2/(cos(x) + 1)^2 + 1)

i. e. $-\frac{2 \, \sqrt{2}}{\sqrt{\frac{\sin\left(x\right)^{2}}{{\left(\cos\left(x\right) + 1\right)}^{2}} + 1}}$.

This function brutally changes the sign of its derivative for $x=\pi$. This smell of an error in manipulating an absolute value.

Indeed, one can (more or less easily) show that :

sage: ((cos(2*x)==cos(2*x).trig_expand().subs(cos(x)^2==1-sin(x)^2))*-1)
....: .subs(x==x/2)+1
-cos(x) + 1 == 2*sin(1/2*x)^2

Therefore, we are trying to compute $\displaystyle\int_0^{2\pi}\sqrt{2\sin(x/2)}\,dx$, which is :

with assuming(x,"real"):integrate(sqrt(2*sin(x/2)^2).simplify(),x,0,2*pi,h
....: old=True)
integrate(sqrt(2)*abs(sin(1/2*x)), x, 0, 2*pi)

i. e. $\int_{0}^{2 \, \pi} \sqrt{2} {\left| \sin\left(\frac{1}{2} \, x\right) \right|}\,{d x}$.

since $x\in[=(0~2\pi)\Rightarrow\sin(x/2)>0$, this should be evaluated as

sage: integrate(sqrt(2)*sin(x/2),x,0,2*pi,hold=True)==integrate(sqrt(2)*sin(x/2)
....: ,x,0,2*pi)
integrate(sqrt(2)*sin(1/2*x), x, 0, 2*pi) == 2^(5/2)

But it's not.

What other possibilities do we have ? Both sympy and giac fail to find a primitive of $\sqrt{1-\cos(x)}$ or the definite integral. But fricas does find a primitive :

sage: integrate(sqrt(1-cos(x)),x, algorithm="fricas")
-2*(cos(x) + 1)*sqrt(-cos(x) + 1)/sin(x)

i. e. $-\frac{2 \, {\left(\cos\left(x\right) + 1\right)} \sqrt{-\cos\left(x\right) + 1}}{\sin\left(x\right)}$.

which can be differentiated back to the original expression :

sage: integrate(sqrt(1-cos(x)),x, algorithm="fricas").diff(x).expand().trig_simp
....: lify()
sqrt(-cos(x) + 1)

But fricas fails to find the definite integral, which we have to find by hand :

sage: foo=integrate(sqrt(1-cos(x)),x, algorithm="fricas")
sage: (foo.limit(x=2*pi,dir="-")-foo.limit(x=0,dir="+")).simplify()

maple finds a quite different expression :

sage: maple.integrate(sqrt(1-cos(x)),x).sage()
4*(cos(1/2*x)^2 - 1)*cos(1/2*x)/(sqrt(-2*cos(1/2*x)^2 + 2)*sin(1/2*x))

i. e. $\frac{4 \, {\left(\cos\left(\frac{1}{2} \, x\right)^{2} - 1\right)} \cos\left(\frac{1}{2} \, x\right)}{\sqrt{-2 \, \cos\left(\frac{1}{2} \, x\right)^{2} + 2} \sin\left(\frac{1}{2} \, x\right)}$

whch can been redifferentiated to (something close to) the form we have seen when solving manually in order to understand maxima's error :

sage: maple.integrate(sqrt(1-cos(x)),x).sage().diff(x).trig_expand().factor().tr
....: ig_simplify()

i. e. $\frac{\sqrt{2} \sin\left(\frac{1}{2} \, x\right)^{2}}{\sqrt{\sin\left(\frac{1}{2} \, x\right)^{2}}}$.

Again, since $x\in\left(0~2\pi\right)$, this amounts to $\sqrt{2\sin(x/2)}$, which we used previously.

maple fails to find the definite integral, which may be recomuted by taking the limits at the bounds.

mathematica gives yet another form :

sage: mathematica.Integrate(sqrt(1-cos(x)),x).sage()
-2*sqrt(-cos(x) + 1)*cot(1/2*x)

i. e. $-2 \, \sqrt{-\cos\left(x\right) + 1} \cot\left(\frac{1}{2} \, x\right)$.

which can also be redifferentiated to the same form as maple's result :

sage: mathematica.Integrate(sqrt(1-cos(x)),x).sage().subs(1-cos(x)==2*sin(x/2)^2
....: ).diff(x).trig_simplify()

i. e. $\frac{\sqrt{2} \sin\left(\frac{1}{2} \, x\right)^{2}}{\sqrt{\sin\left(\frac{1}{2} \, x\right)^{2}}}$.

mathematica finds the definite integral :

sage: mathematica.Integrate(sqrt(1-cos(x)),[x,0,2*pi]).sage()

Not seen : the plots of the integrand and of the various solutions are also helpful to understand the problem, understand the possible errors of the various CASes and to check them against one another (hint : plot two finctions to be compared with a slight vertical shift alowing to separate them).

Numerical integration may also help...

edit flag offensive delete link more

answered 2018-01-22 21:11:06 +0100

tmonteil gravatar image

updated 2018-01-23 01:47:26 +0100

Thanks for reporting, this is now trac ticket 24587 !

edit flag offensive delete link more


It is not fixed in 8.2.beta3 :

sage: integrate(sqrt(1-cos(x)),x,0,pi)

Indeed. But :

sage: integrate(sqrt(1-cos(x)),x,0,2*pi)

Plotting the primitive proposzed by maxima is enough to understand the problem.

Emmanuel Charpentier gravatar imageEmmanuel Charpentier ( 2018-01-23 00:10:43 +0100 )edit

Hmm, apparently, i made a copy-paste typo, i updated my answer, reported the issue and added a confirmed_bug tag.

tmonteil gravatar imagetmonteil ( 2018-01-23 01:43:02 +0100 )edit

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools


Asked: 2018-01-22 15:27:34 +0100

Seen: 1,625 times

Last updated: Jan 23 '18