Integrate piecewise function with change of variable
I would like to integrate a piecewise defined function while operating a change of variable. I start by defining the function and another variable involved in the change of variable:
phi(x) = piecewise([([-1,1], (1-abs(x))*(1-abs(x))*(1+2*abs(x)))]);
phi(x) = phi.extension(0);
h=pi/n;
h=h.n();
What I would like to do is integrate the function phi(x/h-1)
between 0
and pi
so I try it and results in
integral(phi(x/h-1),x,0,pi)
ValueError: substituting the piecewise variable must result in real number
So I then try to use another variable which I try to define to be 'real'
t=var('t')
assume(t,'real');
integral(phi(t/h-1),t,0,pi)
but it results in the same error... Now I try the "lambda" method since it worked when calling the plot
function with the same change of variable; but fail again
integral(lambda t: phi(t/h-1),t,0,pi)
TypeError: unable to convert <function <lambda> at 0x16d71f140> to a symbolic expression
Now I try to use another integration method with definite_integral
but get the same errors, only different for the "lambda" method
definite_integral(lambda x: phi(x/h-1),x,0,pi)
TypeError: cannot coerce arguments: no canonical coercion from <type 'function'> to Symbolic Ring
Is there any way around this? I really do not know what else to try...