# integral should not be zero

```
F = sqrt((cos(x) - 1)^2 + sin(x)^2)
F.integrate(x, 0, 2*pi)
```

yields 0, the expected answer is 8.

integral should not be zero

```
F = sqrt((cos(x) - 1)^2 + sin(x)^2)
F.integrate(x, 0, 2*pi)
```

yields 0, the expected answer is 8.

add a comment

1

Indeed.

```
sage: F.nintegrate(x,0,2*pi)
(8.0, 8.881784197001255e-14, 21, 0)
```

Maxima does this correctly internally.

```
(%i2) integrate( sqrt((cos(x) - 1)^2 + sin(x)^2), x, 0, 2*%pi);
(%o2) 8
```

But

```
(%i5) load(abs_integrate);
(%o5) /Users/.../sage/local/share/maxima/5.34.1/share/contr\
ib/integration/abs_integrate.mac
(%i6) integrate( sqrt((cos(x) - 1)^2 + sin(x)^2), x, 0, 2*%pi);
(%o6) 0
```

So this seems to be a bug in that package.

1

This is now tracked at http://trac.sagemath.org/ticket/17183 and reported upstream at https://sourceforge.net/p/maxima/bugs/2823/ .

Asked: **
2014-10-19 17:44:26 -0500
**

Seen: **135 times**

Last updated: **Oct 20 '14**

problem extracting the differentials of a chain complex

Sage incorrectly evaluates series

Cannot mulyiply polynomial by matrix when ordering is explicitly specified

Attaching files in notebook does not update contents

ContinuedFractions fail on large integers?

Polynomials over number fields

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.