Ask Your Question
2

integrate cos(x)*cos(2x)*...*cos(mx) via SAGE

asked 2013-06-17 13:39:21 +0100

IvanG gravatar image

updated 2013-06-18 03:54:18 +0100

I'm going to find $I_m=\int_0^{2\pi} \prod_{k=1}^m cos(kx){}dx$, where $m=1,2,3\ldots$

Simple SAGE code:

x=var('x')
f = lambda m,x : prod([cos(k*x) for k in range(1,m+1)])
for m in range(1,15+1):
    print m, numerical_integral(f(m,x), 0, 2*pi)[0],integrate(f(m,x),x,0,2*pi).n()

Output:

1 -1.47676658757e-16 0.000000000000000
2 -5.27735962315e-16 0.000000000000000
3 1.57079632679 1.57079632679490
4 0.785398163397 0.785398163397448
5 -2.60536121164e-16 0.000000000000000
6 -1.81559273097e-16 0.000000000000000
7 0.392699081699 0.392699081698724
8 0.343611696486 0.147262155637022
9 -1.72448482421e-16 0.294524311274043
10 -1.8747663502e-16 0.196349540849362
11 0.214757310304 0.312932080728671
12 0.190213617698 0.177941771394734
13 -1.30355375996e-16 0.208621387152447
14 -1.25168280013e-16 0.0859029241215959
15 0.138441766107 0.134223318939994

As you can see numerical answer is right, but result of integrate(...) is right for $m=1,2,\ldots,7$ and then there is some bug. We can print indefinite integral:

for m in range(7,11+1):
    print 'm=',m
    print 'Indef_I_m=',integrate(f(m,x),x)

And Output:

m = 7
Indef_I_m = 1/16*x + 1/16*sin(2*x) + 1/32*sin(4*x) + 7/384*sin(6*x) +
7/512*sin(8*x) + 3/320*sin(10*x) + 5/768*sin(12*x) + 5/896*sin(14*x) +
1/256*sin(16*x) + 1/384*sin(18*x) + 1/640*sin(20*x) + 1/704*sin(22*x) +
1/1536*sin(24*x) + 1/1664*sin(26*x) + 1/1792*sin(28*x)
m = 8
Indef_I_m = 3/128*x + 5/256*sin(2*x) + 1/32*sin(3*x) + 5/512*sin(4*x) +
5/768*sin(6*x) + 1/256*sin(8*x) + 1/256*sin(10*x) + 1/256*sin(12*x) +
1/256*sin(14*x) + 1/256*sin(16*x) + 7/2304*sin(18*x) + 3/1280*sin(20*x)
+ 5/2816*sin(22*x) + 1/768*sin(24*x) + 3/3328*sin(26*x) +
1/1792*sin(28*x) + 1/1920*sin(30*x) + 1/4096*sin(32*x) +
1/4352*sin(34*x) + 1/4608*sin(36*x) + 3/32*sin(x)
m = 9
Indef_I_m = 3/64*x + 3/128*sin(2*x) + 23/768*sin(3*x) + 3/256*sin(4*x) +
3/640*sin(5*x) + 1/128*sin(6*x) + 5/1792*sin(7*x) + 5/2304*sin(9*x) +
3/2816*sin(11*x) + 1/832*sin(13*x) + 1/1280*sin(15*x) + 3/4352*sin(17*x)
+ 5/4864*sin(19*x) + 1/1344*sin(21*x) + 3/2944*sin(23*x) +
7/6400*sin(25*x) + 1/1152*sin(27*x) + 3/3712*sin(29*x) +
5/7936*sin(31*x) + 1/2112*sin(33*x) + 3/8960*sin(35*x) +
1/4736*sin(37*x) + 1/4992*sin(39*x) + 1/10496*sin(41*x) +
1/11008*sin ...
(more)
edit retag flag offensive close merge delete

Comments

1

Found this interesting (in Sage 5.9): f(8,x).simplify_full().integral(x,0,2*pi) == 7/64*pi and (7/64*pi).n() == 0.343611696486384

rickhg12hs gravatar imagerickhg12hs ( 2013-06-17 21:51:10 +0100 )edit

Thanks! Really if use simplify_full() than answer is correct

IvanG gravatar imageIvanG ( 2013-06-18 00:51:12 +0100 )edit
1

Update - this has been fixed upstream.

kcrisman gravatar imagekcrisman ( 2013-07-02 10:45:41 +0100 )edit

1 Answer

Sort by ยป oldest newest most voted
0

answered 2013-06-18 01:01:46 +0100

IvanG gravatar image

So the answer is - Yes. It is a bug in algorithm='maxima', so use algorithm='mathematica_free' (def new function to find definite integral) or simplify_full() for such product of cos(kx) and than integrate.

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 2013-06-17 13:39:21 +0100

Seen: 863 times

Last updated: Jun 18 '13