1 | initial version |

One can construct matrix space over `GF(3)`

and then change ring of each matrix to `ZZ`

and subtract 1:

```
MS = MatrixSpace(GF(3),2,2)
for T in MS:
M = T.change_ring(ZZ).apply_map(lambda x: x-1)
print(M,'\n')
```

2 | No.2 Revision |

~~One ~~To get all matrices over ${ -1, 0, +1}$ one can construct matrix space over `GF(3)`

and then change ring of each matrix to `ZZ`

and subtract ~~1:~~1 from each element:

~~MS = MatrixSpace(GF(3),2,2)
~~for T in ~~MS:
~~MatrixSpace(GF(3),2,2):
M = T.change_ring(ZZ).apply_map(lambda x: x-1)
print(M,'\n')

3 | No.3 Revision |

To get all matrices over ~~${ ~~$\{ -1, 0, ~~+1}$ ~~+1\}$ one can construct matrix space over `GF(3)`

and then change ring of each matrix to `ZZ`

and subtract 1 from each element:

```
for T in MatrixSpace(GF(3),2,2):
M = T.change_ring(ZZ).apply_map(lambda x: x-1)
print(M,'\n')
```

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.