1 | initial version |

A basis of the quotient ring $K[x_1,\ldots,x_n]/I$ as a $K$-vector space is also called a *normal basis* of the ideal $I$.

```
sage: R.<x,y> = PolynomialRing(QQ, order='lex')
sage: I = R.ideal(x^2+y^2-1, 16*x^2*y^2-1)
sage: I.normal_basis()
[x*y^3, y^3, x*y^2, y^2, x*y, y, x, 1]
```

See the documentation of `normal_basis`

for more options (e.g., when $I$ is not $0$-dimensional).

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.